
One of the first significant elements of UNIX
[1], was process time-sharing [2]. It’s easy to
forget these early times, as we now com-
monly touch relatively inexpensive multi-cpu
hardware, eclipsing the power of a PDP-11;
with smp and multi-threading kernels. Com-
puters therefore manage simultaneous proc-
esses scaled to levels only the most adven-
turous could dare imagine back when UNIX
first appeared. Active and persistent memory
have of course scaled with raw CPU power.
And it continues to get faster. We all know
this.

We all know about machines, and have come
to repeat the design intentions of time-
sharing in many forms, including the
FreeBSD jail(8) facility- a virtual machine.

The jail(8) subsystem in FreeBSD is well
known to be an incredibly secure and durable
system for partitioning processes, memory,
network, and disk i/o. Building on the sim-
plest of core UNIX subsystems, jail is an ele-

gant base for creating Virtual Private Servers
(# man 8 jail) To bastardize this rich and
elegant system on FreeBSD:

chroot(2), bound to an IP address, minus
some relevant system calls = jail

(Simply add a BSD userland, and a full virtual
system is born, with a confined root!)

This material assumes the reader is familiar
with the jail(8) utility, and generally familiar
with the mechanisms of the underlying jail(2)
system call. Further reading on the use and
implimentation of jail(8) can be found in the
paper written by jail’s original author, ‘Jails:
Confining the omnipotent root.’, (PHK/
Watson, FreeBSD Core) [3].

This material aims to share real-world expe-
riences running massively jailed systems,
from a ISP perspective. Diverse goals and
agendas can be liberated by applying modu-
lar, self-contained, and disposable technolo-
gies- (in short, traditional UNIX principles).

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

An ISP Perspective, jail(8)
Virtual Private Servers
Isaac (.ike) Levy, <ike@lesmuug.org>

Materials prepared for AsiaBSDCon 2007 Proceedings, University of Tokyo, Japan.
These materials are Copyright 2006 Isaac Levy, under the terms of the BSD license.

The denial of complexity is the beginning of failure.

 - Swiss historian, Jacob Burkhardt

..with proper design, the features come cheaply. This approach is arduous, but
continues to succeed.

 - UNIX co-creator, Dennis Ritchie

...As in all Utopias, the right to have plans of any significance belonged only to
the planners in charge.

 - Jane Jacobs, “The Death and Life of Great American Cities” [0]

Audience for these materials:

- UNIX System Administrators with demand-
ing users, and limited hardware resources

- Internet Service Providers who wish to pro-
vide robust shared hardware services

- Internet Service Providers with rigorous
high-availability requirements, where mutu-
ally untrusted users and processes pose a
threat to service reliability (uptime)

- Institutions with fast-paced development,
learning, or short-lived server requirements

The iMeme Experience, my time at a small
jailing ISP- (the first of it’s kind?)

Around 2000 I became a customer at a small
web hosting company called iMeme. The
iMeme specialty, root-access virtual servers
(using FreeBSD jail(8)). My need, was to run
and further develop the behemoth web appli-
cation server, Zope. I needed basics- root, a
compiler, cron, logfile analysis and reporting
tools- (a full server). My budget was under
$70/mo usd, and back then a dedicated
server was unrealistic at that rate- I needed
virtual-hosting scaled prices.

By 2002, iMeme hit some stiff ‘problems’
when a partner left, I was then asked to join
the company- and we gave it quite a go.
During my time at the company we hit a mark
of 1000 domains hosted, in around 470 jailed
systems. The ISP was unique in that once
you paid for your jailed system online, it was
‘booted’, and you had access to your new
server- no Administrator action was neces-
sary. iMeme, as a company, later died based
on external business problems.

Mutually Untrusted Users, (and processes).

2007, it can be estimated there are 785 mil-
lion people using the ipv4 internet [4], argua-
bly a critical mass. Most of these users have

personal computers, yet a great deal of com-
puting today, again, happens on servers, of-
fering services in various contexts.

As the needs of users become more sophis-
ticated and varied, the applications become a
uniquely fragmented environment. From a
birds eye view, an astounding amount of
computing machinery makes all these net-
work applications run. From a micro view, it
doesn’t take much computing machinery to
run a single Gmail account- (from the CPU
clock perspective).

With that, the proliferation of network soft-
ware which looks suspiciously like ‘websites’,
(and perhaps mislabeled as such), are start-
ing to to take various business applications
off the PC, and onto the webserver, en
masse’. Everything from content and asset
management systems, to financial account-
ing and transaction systems, to the core of
the internet- information exchange through
blogs, online communities, and on, and on.
Through a sort of promiscuity of form [5], http
applications are evolving to manifest timeless
forms of ‘traditional’ software.

Users of any given ISP always include devel-
opers, hackers [6] , us. The mass of internet
users who do not hack, have the same so-
phisticated and diverse demands. For ex-
ample, thank MySpace for escalating user
expectations in mass-market accessibility in
http server applications. With that, iMeme
aimed to provide an inexpensive base plat-
form for new internet applications like this to
grow.

The real world of iMeme users: A hacker: “I
want to compile LISP”, An undergraduate so-
ciology student: “I want to install ‘Foo’ blog
software, it’s PHP and the instructions say I
need to run Cron”, A web designer: “I want to
run an http server on port 8080”. A business
owner: “I want to run Foo web application for
my business.” A community leader: “I want to
run Mailman List Manager”, A 13 year old
hacker: “I want to run both an IRC and jabber

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

server for my friends”. Most iMeme users
simply, just wanted to hack Python/Zope.

Fairly simple requirements, yet so hard for
commodity web hosting to accommodate!

Each of these users demands, and deserves,
root.

The real world of iMeme users was extremely
diverse. From a business perspective, the
‘markets’ served were all considered niche-
hosting companies thought we were crazy.
However, we felt the internet is merely niches
stitched together to make a whole, and jail
enabled a unique opportunity to build our ISP
in the model of a metropolitan city [7].

Timeless Methodology in Computing
(UNIX, the undead in computing)

Ancient UNIX computing models revolved
around a model which the PC era did away
with: server applications, feeding thin clients
(server + many UNIX terminals). PC’s
evolved, and network computing became
largely a peer-to-peer affair. The internet,
has now brought a swing in the pendulum
back to thin clients, as the Web Browser, as
software, takes on the same role a terminal
did years ago- and UNIX is right there, ready
and waiting to handle the applications- with
an astounding wealth of time-tested (and
some ancient) tools well suited for managing
multi-user multi-process servers.

With that, simple, modular, disposable utilities
are vital to meeting the diverse needs of the
iMeme user, in providing a full Virtual Private
Server environment.

When jail(8) was first introduced to FreeBSD,
it was (and still is) a simple utility, written in
the spirit of old UNIX. As a simple utility,
jail(8) provided iMeme the opportunity to
build on the work of others and avoid rein-
vention and incompatibilities, (classic UNIX
methodology).

jail(8) therefore proved itself well suited to to
taking on the complexities of our user needs,
which were essentially limitless. Other Virtu-
alized system designs come close, but in-
somuch as most Virtual OS systems take on
the monolithic responsibility of providing all
system interfaces, (virtualized memory, net-
working, filesystem), they all critically failed to
meet the iMeme needs in one area or an-
other- as their respective histories were to
meet a particular computing problem, or use
case.

The history of computing is littered with the
corpses of Virtual OS systems, all of which
end up withering under the sheer weight of
the computational responsibilities they take
on. However, like UNIX time sharing, simple
and modular components of computational
virtualization seem to be the only elements
which persist. Subsystems like UNIX users
and ACL’s, actually the entire concept of
UNIX privilege separation, follows in the foot-
steps of the simple mechanism of time-
sharing. Enter, jail(8), 1998.

As a small and complete utility, jail(8) is much
like the invention of of the Otis Elevator and
it’s affect on the design of skyscrapers,

“In the era of the staircase all floors above
the second were considered unfit for com-
mercial purposes, and all those above the
fifth, uninhabitable.” [8]

The jail(8) utility, enabled the same sort of
liberation of space, and with the same over-
tones of ‘safety’- if one compares security
features to elevator safety concerns, (falling).

(Running the risk of sounding silly, I am di-
rectly comparing an internet hosting ISP to a
skyscraper, and skyscrapers are different
from other types of buildings.)

The iMeme Experience (System Specifics)

The iMeme systems were quite simple for
UNIX administrators to understand.

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

We ran high-density 2u (and then 1u) serv-
ers, which we aimed to have approximately
50 jails running on at any given time. In
2001, a base account was provisioned 4gb of
disk space, and 100mb of what we called
‘process space’, the amalgamation of mem-
ory and cpu usage. Bandwidth was rarely an
issue worth metering back then, so very ba-
sic QOS oriented throttling was performed to
ensure every user had a fair slice of available
network traffic.

For disk space, we ran scripts from the host
server which simply used du, and shoved the
output into MySQL databases- where we
then automated the process of implementing
policies of charging for extra disk usage. We
choose to give 1 month of ‘grace time’, in-
somuch as sometimes logfiles would ex-
plode, or users would accidentally consume
undue disk space- and we felt this was a
simple buffer our customers appreciated.

Hard limits for disk space were always a con-
sideration. Disk slices were far too rigid to
meet user demands, (creating extreme over-
head in managing upgrading disk space),
though we did experiment with them. A per-
sistent risk was that a user, by choice, acci-
dent, or compromise, could consume all the
available disk space for a jailing system.
With that, again, simple unix strategies came
back into place to contain the problem. The
strategy we ended up liking best was to ab-
solutely a partition for jails, (the majority of
available disk), and then perhaps break it into
a few chunks to isolate various jailed disk
space from each other. After time, 80gb
slices worked nicely, and fitting 4x 300gb
drives into 1u, this afforded a sort of ‘neigh-
borhood’ partitioning. Extreme cases of disk
consumption were further restricted on a per-
case basis, using file-backed memory disks
(disk images); but, especially in recent
FreeBSD releases, this incurs an additional i/
o penalty, which users do not appreciate-
(and it soaks RAM on the host system as
well). Disk images are not necessarily a
practical solution for every jailed system,

however flexible they are in providing hard
limits to disk space.

Memory and CPU usage was polled on a
regular basis for each jail. Shell scripts were
originally setup to run as cron jobs inside
each jail, which took cumulative memory
consumption and cpu usage by parsing ps(1)
output inside a given jail. While iMeme origi-
nally ran thes scripts inside of each jailed
system, outputting totals to text files in /jail/
dir/var/log/, however this always carried the
risk that a user could (trivially) bypass this
system to avoid increased billing or other-
wise. In their jail, remember, the user has
root. That stated, eventually iMeme moved
this system out to the host system with new
jailing features in FreeBSD 5.x- insomuch as
one can list/kill processes based on the jail
id, information availble to ps, and processes
listed in the /proc filesystem.

FreeBSD 4.x jailing relied heavily on a jailed
hostname for host-level process identification
(and subsequent management)- which cre-
ated problems. If a user changed their host-
name, accidentally or maliciously, havoc
would follow for management systems in the
host system. FreeBSD 5.x solved this prob-
lem by pinning a ‘jail id’ to each process on
the system, and providing a sysctl to lock
down the ability to change hostnames within
a jail.

Jailed process restrictions were then handled
neatly using renice(8). Processes which
hogged undue CPU were simply renice’d by
the host server, releasing the process renice
level after 5 minutes to see if the process
was again behaving. If not, it was reniced
again. This crude strategy was wildly suc-
cessful in maintaining fair-share cpu and
memory usage for processes. Problem
processes, (things with memory leaks, for
example), were then in the hands of the jailed
user to deal with- without negatively impact-
ing the other jailed users.

Fork bombs were still a threat, but from
FreeBSD 5.x onward, each jail could be set

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

to start with an escalated securelevel, and
maxprocs could be locked for a jail,
chflags(2) disabled in jails via host sysctl set-
tings, and viola- fork bombs as a threat are
mitigated, with relatively minimal manage-
ment and resource consumption.

Network resource management is far outside
the scope of this material, however, it is worth
mentioning one thing: at iMeme, each jailing
hardware server was conceptually treated
like a network border or gateway, with routing
and filtering tasks carried out inside the ma-
chine. This paradigm shift in management
greatly simplified the physical network re-
quirements, (making routers, firewalls, non-
existent). With that, we ran NAT for our ex-
ternal IP blocks, and mapped addresses to
our jails- which all ran using a private net-
block, (192.168.x.x). This NAT strategy had
pros and cons and is hardly worth discus-
sion- except to state it all was run from the
host servers, with negligible impact on jailed
systems. Also, back then, ipfw(8) and dum-
mynet(4) were used for very minimal network
management- dummynet(4) configured to
provide eqal-share bandwidth (ad-hock
QOS), and IPFW was crudely used to put out
fires. Today, in my Diversaform jail cluster,
pf(4) nicely replaces these tools- and is be-
coming the de-facto packet filter- and in 5
more years, there may be something else,
but it will still be running from the jailing host
hardware.

Large Scale Management Techniques
(System Specifics)

At iMeme, we maintained Master Record
Server (obviously a redundant system). This
system primarily kept the MySQL database
which recorded everything from resource us-
age, to billing and contact information. This
strategy worked well, provided any
modifications/additions to this system were
thoroughly tested. This was easy, insomuch
as we could replicate this system in one of
our jails at any time, and then dispose of the
jail. There was no reason in particular for the

MySQL database, it was just used in the be-
ginning and stuck with us reliably.

The website, where users bought jailed sys-
tems, and managed their account and billing,
was all written in Zope, and had PHP ele-
ments added over time. This could have
been any web technology.

As each iMeme jailed system had some cus-
tom tweaks, we maintained a pre-compiled
FreeBSD useraland, preconfigured with any
small tweaks to our enviornment (like the
cpu/memory polling cron job mentioned be-
fore). These jailed systems were built, and
put into cvs(1) repositories for long-term
management, however tar(1) became the
deployment tool of choice. Scripts to add
new systems would effectively untar the cur-
rent jailing userland, and then run scripts to
add an initial user, add the root password,
and start the jail.

Upgrading jails was a trivial technical proc-
ess. System upgrades were handled simi-
larly, un-tarring updated userland sources to
jailed userland directories. Following the hi-
er(7) man page, users additional applications
ended up in /usr/local, and only in extreme
edge cases did a customer application have
problems with minor dot upgrades, (4.5 to
4.6, for example).

In FreeBSD 5.x, it became clear that running
installworld, and tossing it an additional flag
for the jailed directories, was even simpler
than the tarballs, with the additional benefit of
dispensing with keeping userland (binaries!)
in CVS.

When monitoring the systems, based on the
rapid scaling possibilities with the ease of
adding jails, keep monitoring simple- and
quiet. When problems occur on jailed sys-
tems, it’s *always* possible that all jails on a
particular host are affected, so if they all trip
alarms, administrators can get lost in white
noise. An experiment, was logger(1)/
syslog(3). iMeme tried pushing all jailed logs
out to master syslogd(8) server, with nearly

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

worthless results. The valuable information
was covered by the white noise of everything
users were doing and running in their sys-
tems, and it also provided outright surprising
breaches of privacy- so iMeme abandoned
this idea immeadiately. While there are ways
to sanely utilize syslogd(8) schemes, they are
far outside of the scope of this material.

Jailing Redundancy (failure is life)

Jails present a uniquely simplistic mechanism
for backup and fail-over. At iMeme, each jail-
ing host kept jails in /usr/local/jails. As time
and internal methodology evolved, (disk slice
strategies, etc...)
/usr/local/jails/hostname.jailing.host became
collected mount ponts and soft links, but the
userland interface was always the same to
find a given jail:
/usr/local/jails/hostname.jailing.host/JAIL_DI
R

Then, each jaiing host both exported, and
mounted, all other jail directories as an NFS
mount. This carried extreme management
benefits, worth the hassle and cursing asso-
ciated with heavy NFS use. Operations
could be carried out on each jailed userland
from any jailing host in the cluster! With that
stated, backups and restore became simple
operations. Backing up became an operation
of tarballing each jail to a backup server, (in-
dependently redundant), and restores con-
sisted of untarring the jailed userland in the
NFS mount of a jailed host. If a jailing host
server died, all of it’s jailed systems could
then be rapidly re-distributed and re-started
across the whole cluster. This process re-
quired Administrator intervention.

Post-iMeme, Diversaform jailed systems are
run slightly differently- without NFS. Each
jailing host has an identical hardware ma-
chine, which jailed systems are regularly
synchronized to. If a jailed application re-
quires time-based backups, it is synchronized
to another jailing server (itself having a hard-
ware twin). Diversaform systems have also

been experimenting with a combination of
carp(4) and ggated(8) (GEOM Gate), provid-
ing network interface virtualization and net-
work block-level disk mirroring, but due to
discovered inconsistencies of the FreeBSD
carp(4) mechanism, and the relatively low
adoption (and documentation) of ggated(8),
this setup is still considered experimental.
However, as these tools mature, they prom-
ise to help bring real-time failover of jailed
systems- without Administrator intervention.

One last strategy for jailing failover has been
called ‘The Golden Jailing Formula’: NFS
mass storage backing for jails’ userland, run-
ning on thin servers in a cluster. This is an
excellent strategy, excepting it’s restrictive-
ness for scaling. Many jailing administrators
have attempted this formula, yet it doesn’t
scale as modularly as the iMeme strategy-
which uses many jailing hosting servers, (or
one jailing host). Total storage, i/o through-
put, and then redundancy of this system
make scaling jails difficult- and the reality of
jailing, is that in many contexts, jailed sys-
tems grow far beyond initial expectations. So
while this is a technologically viable plan, so-
cial, political, economic, and human factors
limit it’s success in most manifestations of
massively jailed environments.

User Segregation (a bad idea)

Back to the various mutually untrusted users,
a component of any massively jailed systems
environment is to segregate users according
to their threat level to the whole. This quickly
takes jailing into philosophical approaches to
social, political, economic, and human fac-
tors.

The wily hacker is your friend. iMeme foun-
ders’ roots literally grew up at the annual
Defcon security conference, in the USA.
With that, many iMeme customers were po-
litely put, a bit insane- and very demanding.
Should these users be identified and placed
on their own hardware, so some hackhing
hyjinks don’t get out of control and affect the

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

‘small business’ or ‘nice’ customers? This is
a common question iMeme wrestled with.

However, at this real-world massively jailed
ISP, the very opposite scenario manifest.
The ‘small business’ user often followed less
than adequate security practices, as well as
running less stable software. With that, it
was more often the ‘wiley hacker’ complain-
ing about their small-business or blogging
neighbor.

Regardless, it became clear that there was
no viable metric for how or when to segre-
gate users to given hardware servers , and in
the end it became irrelevant in mitigating the
risks inherent in any shared system. So what
did iMeme do? This problem is a constant,
use this environment to advantage for all.

Blindly distributing types of users across all
hardware, had the distinct advantage of lev-
eraging everyone’s shared needs- keeping all
systems online. The use of a customer/
community mailing list created an enviorn-
ment where business owners and wiley
hackers alike, could share experiences and
discuss problems- all with the common aim of
solving the problems. Additionally, this
community took a great deal of impossible
administrative overhead out of iMeme Admin-
istrator hands. It helped set the expectation
that we just ran the servers, but had no ex-
pertise in using FOO PHP blog software, or
BAR irc server, etc...

That stated, hackers who monitor uptime
were a guard for the ‘business owner’ who
did not, and the various social and cultural
diversity of the user base ensured somebody
was online 24/7. While this made for excel-
lent catch-all systems monitoring, it also
made it difficult to schedule upgrades- a triv-
ial point in the context of the benefits.

Developers vs. Production Users is likewise a
poor segregation line, insomuch as ‘develop-
ers’ are often hammering systems that ‘pro-
duction users’ may rarely touch- and can help
spot system problems before they become

critical (arbitrary inode corruption, for an an-
ecdotal example).

In the end, user diversity decreased overall
failure risks in iMeme systems.

Conclusion

Through a combination of building on thirty
years of UNIX, attention to social concerns,
and respect for undeniable complexity, jail(8)
was leveraged to great success at the ISP
iMeme.

The most valuable elements in successfully
running massively jailed systems were not
cutting-edge technologies, but the application
of ancient practices in computing, urban de-
sign, and to a great extent social and political
sciences.

Now that iMeme is gone, who’s next? What
ISP, in private, commercial, or other contexts
will step foreword to provide virtual systems?

Doesn’t everyone deserve root?

Awknowledgements

Jon Ringuette (wintermute),
founding partner of iMeme, to it’s end.
<bobskr@gmail.com>

Ethan and Jake, iMeme founding partners

Dave Lawson, (reality), iMeme core friend

Elise, the P1rate, whit537, beren1hand, and
all the iMeme community who LIVED on irc

Footnotes

Note: parens in the text, () refer to a correspond-
ing UNIX man page, notatin of brackets [] refer to
the footnotes below.

[0] Jane Jacobs , ‘The Death and Life of Great Ameri-
can Cities’ Copyright 1961 Jane Jacobs, Renewed
1989.

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

[1] D. M. Ritchie and K. Thompson , ‘The UNIX Time-
Sharing System*’, First presented at the Fourth ACM
Symposium on Operating Systems Principles, IBM
Thomas J. Watson Research Center, Yorktown Heights,
New York, October 15-17, 1973.

 [2] L. P. Deutsch and B. W. Lampson, `SDS 930 time-
sharing system preliminary reference manual,' Doc.
30.10.10, Project GENIE, Univ. Cal. at Berkeley, April
1965.

[3] Poul-Henning Kamp <phk@FreeBSD.org> , Robert
N. M. Watson <rwatson@FreeBSD.org>, ‘Jails: Confin-
ing the omnipotent root.’ The FreeBSD Project

[4] World population is 6.45 billion today according to
World Gazetteer <http://www.gazetteer.de/home.htm>
;it was 6.3 billion in 2002 according to the UN,
<http://www.un.org/esa/population/publications/wpp200
2/WPP2002-HIGHLIGHTSrev1.PDF>. Internet World
Stats says 785M (March 2004)
<http://www.internetworldstats.com/stats.htm>. NUA
said 606M (Sept. 2002)
<http://www.nua.ie/surveys/how_many_online/>. A
claim that "roughly" or "about" 10% of the world's peo-
ple have Internet access seems safe.

[5] Jonathan Crary, J. G. Ballard and the Promiscuity of
Forms, Zone 1/2 (1986), pp. 159–65. 38- also reprinted
in various MIT press publications.

[6] Hacker is mostly used in the Eric S. Raymond (ESR)
sense of the word- “The term ‘hacker’ also tends to
connote membership in the global community defined
by the net”
<http://www.catb.org/~esr/jargon/html/H/hacker.html>

[7] Christopher Alexander, ‘A City is Not a Tree’, (1968),
Originally published in: Architectural Forum, Vol 122,
No 1, April 1965, pp 58-62 (Part I), Vol 122, No 2, May
1965, pp 58-62 (Part II). Available online in C. Alexan-
der’s Archives, <www.patternlanguage.com>

[8] Rem Koolhaas, ‘Delirious New York: A Retroactive
Manifesto for Manhattan’, (1997), Monacelli Press

Without the amazing support and exis-
tence of the following institutions, none of
this material would have been possible :

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>

