Bluffs

BSD Logging Updated Fast File System
Stephan Uphoff
ups@{freebsd.org|yahoo-inc.com}

http://people.freebsd.org/~ups/pubs/asiabsdcon2007/

Bluffs Main Features

« Journaling File System

— Fast restart after system failure as no file
system checker (fsck) is needed for
recovery

* Mostly compatible with FFS

— Allows easy bidirectional transitioning of
existing file system

— Existing infrastructure can be reused for
booting and emergency file system repair.

Consistency problems in on disk file
systems

File system operations frequently need to
modify multiple locations (sectors) on disk

Example: Creating a file on ffs/bluffs modifies

 Disk location of directory inode

» Disk location of directory block

 Disk location of inode for new file

» Cylinder group block locations of new inode

But disks only support atomic writes of a single
sector at a time!

A system or power failure during the disk
modification process leave the file system
partially modified and inconsistent.

Stable and Ordered Disk Writes

To limit the class of inconsistencies that can occur after
a system failure, file systems order some write
operations (sector modifications) to the disk.

Two disk writes are ordered if the first write is required
to be stable before the second write is issued.

A write to disk is stable if the file system knows that the
disk sector modifications will survive a system or power
failure.

For disks with no or none volatile write cache (most
SCSI drives) any write operation completed by the disk
subsystem is assumed to be stable.

Disk with volatile write cache (most IDE drives) need an
additional operation to flush the cache before writes are
stable.

Strategies for enabling file systems
recovery

FFS (without soft updates)

Uses sector write atomicity by not crossing sector
boundaries on:
 Directory entries
* Inodes
 Indirect block pointers

Uses ordered writes to limit file system
inconsistencies to cases that can successfully
repaired by the file system checker (fsck)

Strategies for enabling file systems
recovery

FFS with soft updates

Same use of sector write atomicity as “classic” FFS.

Uses ordered writes and repeated writes using
initially only a subset of the final modifications to
limit file system inconsistencies to cases that can
successfully repaired by a file system checker in the
background while the file system is mounted (
background fsck)

In general inconsistencies are restricted to free
fragments and inodes not being in the relevant
bitmaps.

Strategies for enabling file systems
recovery

Bluffs:

Uses simple disk sector write atomicity
and ordered writes as building blocks to allow
the recovery process to guarantee higher level
multi sector atomicity.

After recovery either non or all of the
modifications of disk locations that transition a
file system from one consistent state to the next
are applied.

Write Ahead Logging (WAL)

WAL is the technique used by bluffs to guarantee
atomicity of a set of changes to multiple disk locations.
This set of changes is also called completed
transactions.

Intend records that describe these changes are written
to the on disk log.

Only after all intend records of a transaction are on
stable storage(can be read after a system crash) the
set of changes can be applied to the disk locations.

A system failure after all intend records of a transaction
are stable will guarantee that changes are applied to
the on disk file system on recovery.

A system failure before all intend records are stable will
prevent any changes to be applied to the file system.

Example: Creating a file with WAL

Step 1:

Write intend records that describe intended changes of the:
» Disk location of directory inode
» Disk location of directory block
 Disk location of inode for new file
» Cylinder group block locations of new inode

to the log
Step 2:

Wait until all of the intend records are on stable storage.
Step 3:

Apply the changes to

» Disk location of directory inode

» Disk location of directory block

» Disk location of inode for new file

* Cylinder group block locations of new inode

Transaction Implementation

Once a transaction is completed it acquires an exclusive log
lock and sequentially writes all its intend records to log

buffers.

The last intend record of a transaction is marked with an end
of transaction flag.

Bluffs implements lazy transactions and the log buffers are not
automatically flushed to the log.

Since all intend records of a transaction are adjacent in the log
all transactions are ordered and it is easy to detect the last
stable transaction.

A transaction is stable once all of its intend records are stable
In the on disk log.

Intend Record

The intend records written by Bluffs take the form of setting
specific data in disk sectors to a value described in the record.

They take the form of clearing or setting bit ranges in a
specific sector or copying data contained in the record to
locations in the sector.

The operations described by the intend records are
idempotent.

They can be repeatedly applied to the same sector without
changing the results.

Examples of idempotent operations:
X=3; X=X&1; X=X|1,
Examples of non idempotent operations:

X=X+1, X=~X; X=X"1;

Intend record for removing a
directory entry

BAR

BAZ

| | FOO |

The common case of
removing a directory entry
only requires modification
of a the length field of the
previous directory entry
structure.

The intend record simply
contains the disk sector ID
and the offset and new
value of the field.

Intend record for adding a
directory entry

FOO

BAR |

BAZ

FOO

BAR

BAZ

The common case of
adding a directory entry
only requires modification
of a the length field of the
previous directory entry
structure and the copying
of the new directory entry.

The intend record simply
contains the disk sector ID
and the offsets and new
values of the changed
byte locations.

Other examples of intend records

Setting block pointers in indirect blocks -> intend record
contain the disk sector ID and offset and new value of the
pointer.

Allocating or freeing inodes or fragments. -> intend record
just contains the information since location of the relevant
bitmaps are known. Cylinder summary information is

updated as a side effect of applying the intended change.

Changing inode fields (uid, gid,(m|c|a)times, link count,
block pointers ..) -> intend record contains inode number
and offsets and new values

Changing number of directories in a cyclinder group ->
Intend record contains cyclinder group number and the
new value.

Bluffs uses an internal fixes size circular log

Log Tail Log Head

| Log Head l ' Log Tail I

Atomicity of log block writes

Log Blocks that contain valid parts of the log are never
overwritten.

As we don’t care to preserve invalid data we can view the
following as two atomic states that we need to detect after
a system failure:

— All sectors of the block are updated and contain the
new log block data

— None or not all sectors of the blocks have been
updated

Bluffs marks each sector of a log block with a one byte
sequence number to detect if a block has been updated.
Whenever Bluffs wraps around the on disk log area it
increments this sequence number. A block is invalid if any
sector contains an old sequence number.

Log Block in Sector sized
Memo areas
1 1
L L L

Block Header

15| | |

El

=]

Sequence
Number

2 (I —)

Log Block on Sector sized
’ Disk areas
— I]
Y ' v

H g
’ ’
' ‘
' 4 -
‘I ’ A,’ 'l’ ’t
Blogk Header| ..
A |B ‘VC D

[

Last bytes of each sector
saved before overwriting it
with sequence number

————————

Sequence
Number

Log Block
transformation

Log Blocks have

a slightly different on
disk and in memory
layout.

The in memory format
contains a header
followed by data.

The on disk format
additionally marks
each sector with a
sequence number and
contains saved data in
the header.

Checkpoint Record

Bluffs uses checkpoint records to indicate the oldest
intend record needed for recovery. The newest stable
checkpoint record describes the log tail.

Moving the log tail to the right frees up space and is
called log truncation.

Since Bluffs circular log uses that space to add new
records to the log at the log head this is a required
operation.

The log is truncate by making the oldest intend records
obsolete by flushing changes to disk followed by writing a
checkpoint record.

The most recent stable checkpoint record
determines the log tail.

lLog Headl -< Free Space }' ' Log Tail |

Free Block %f Checkpoint Record
Stable Block
Unstable Block

Additional Checkpoint
Information

* The checkpoint actually contains a list
of all sectors that need to be recovered.

* |t also describes the oldest intend
record needed for recovering those
sectors on a per sector base.

This drastically reduces the workload
needed for recovering a file system.

Log Anchors

For recovery bluffs needs to find the most recent stable
Checkpoint record. Theoretically the location can be
recovered on startup by scanning the whole circular log.

However to accelerate restart a pair of "Log anchors" are
used. The log anchors have the property that the last
updated stable log anchor will point to the location of a stable
checkpoint record.

Log Anchors

Log Anchors (Cont)

Unfortunately this adds another write dependency since the
log anchors can only be written after a checkpoint record is
stable.

Because of this Bluffs may restrict the usage of ""Log
Anchors" to cleanly unmounted file systems or allow
configurable behavior in the future.

Complex, restartable Operations

Bluffs tries to minimize the amount of work done in a single
transaction. Complex operations are broken down into simple
transactions that are applied sequentially.

In order to allow complex operations to be atomic from a file
system semantic standpoint they need to be restarted after a
system failure.

A fixed size on disk array is read on startup and each slot
may contain a description of a restartable

operation.
This array is updated using normal transactions semantics.

Operation descriptions may be updates and the last step of a
complex operation can release the slot.

Recovery of the file system restarts all pending complex
operations after the file systems is consistent.

Deleting unlinked files on startup

Unlinked but still opened files need to be deleted after a
system failure.

A limited number of slots are used for this purpose.
Once more unlinked but open files exists a special
restartable operation is used for file deletion on startup.
This operations uses an on disk double linked list of the
to be freed inodes. The head of the list is stored in the

complex operation slot and the per element pointers re-
use fields in the inode not used in unlinked

inodes. This inode list is modified by transactions so list
operations are atomic.

Concurrency

The VFS, the file system layer of FreeBSD,
currently requires files/directories to be
exclusively locked before they are modified.
This file system externally enforced locking is
sufficient to protect meta data owned on a

per file/directory base.

Per file locks are not sufficient to protect the
free inodes and fragments bitmap meta data.

However since allocated blocks/inodes are
protected it is sufficient to protect block/inode
allocation with a lock. This is done using per
cylinder group block locking.

Concurrency (Cont)

When inodes/blocks resources are freed they
leave the protection of the per file/directory lock.

To prevent inconsistencies, transactions that
free resources must be written to the log before
transaction that use the just freed resources.

This is easily accomplished by postponing the
freeing of the resources until the intend records
of a transaction are written to disk.

Caching

Bluffs bypasses the classic buffer layer and interacts directly
with the Virtual Memory (VM) layer .

It participates in the paging decision of the VM layer by
Implementing a virtual page map.

This virtual page map is used for caching active pages.

As long as pages are "mapped’™ in the virtual page table they
can be accessed and their modified and referenced flags can
be set without acquiring a page queue or object mutex.

Access to the pages and operations on the virtual page map
are synchronized using a hashed mutex.

Pages belonging to the same vnode are divided into fixed size
blocks. Each block is then hashed onto a limited number of
mutexes.

Caching (Cont)

Special copyin/copyout operations are used to copy data in or
out of the kernel.

These release the mutex lock of the virtual page map when a
page fault on a user page occurs and restart the operation
after the page fault is handled.

Caching (Cont)

Special copyin/copyout operations are used to copy data in or
out of the kernel.

These release the mutex lock of the virtual page map when a
page fault on a user page occurs and restart the operation
after the page fault is handled.

This avoids having to wire or hold pages.

The actual page data is read using ephemeral mapping
techniques to avoid the need for interprocessor

Translation Lookaside Buffer (TLB) shootdown that require
expensive interprocessor interrupts (IPls).

Log Sequence Number (LSN)

A log sequence number is used to uniquely identify log
records.

This is used to identify, find and retrieve a log entry on the disk
and for reasoning about the order of log records.

Bluffs constructs the LSN, an unsigned 64 bit type, by using
lower bits for the offset in the circular log data, and higher bits
for a count on how often we wrapped around to the start of the
are log area.

Log wraparound count | Offset in log area |

For two LSNs X and Y, X <Y indicates the log entry

identified by X was written before the log entry identified by
Y

Tracking dirty (modified) meta data disk regions
with dirty region descriptors

Bluffs tracks modified data on regions (mostly
block sized) while preserving sector update
semantics

The dirty region descriptor is one of the central
data structures in Bluffs and serves multiple
purposes described in detail in the next slides

vnode vnode

Dirty Dirty
Regions Regions

vnode

Dirty
Regions

Per file
system list of
dirty regions
sorted by log

sequence
number of
o ———y
.cauon Dirty Region Dirty Region | Dirty Region m |
D'f“)’ vnode vnode vnode vnode
Regions !
offset offset offset offset
length length length length
Log Log Log Log
sequence sequence sequence sequence
number of number of number of number of
first first first first
modification modification modification modification
Log Log Log Log
sequence sequence sequence sequence
number of number of number of number of
last last last last
modification modification modification modification
S — T ——

Enforcing WAL protocol with
dirty regions

When meta data pages are forced out of memory by the
page daemon the put_pages function is called on the
owning vnode. (All meta data, including cylinder groups
blocks are mapped onto vnodes)

The associated dirty region is looked up.

If the LSN of the last transaction that changed the
region indicates that it is stable - the pages can be
written to disk directly.

Otherwise a (partial) log flush is forced so that the
transaction becomes stable. Once the transaction is
stable the pages are written to disk.

Writing checkpoints using
dirty regions

The checkpoint record contains dirty regions and the
LSN of their first modification.

The checkpoint record is written by iterating through all
dirty regions of a file system.

Log truncation using dirty
regions

All dirty regions are on a per file system list sorted by oldest
modification LSN.

By flushing dirty regions in oldest modification LSN order part of the
log becomes obsolete and can be reused once the next checkpoint
Is written.

Bluffs will start flushing dirty regions using this order once the free
space between log head and log talil

Is smaller than a certain threshold.

Flushing and writing a checkpoint record does take time so it must
be done early enough so that free space is generated before it is
needed.

Otherwise file system operations that write log entries would be
stopped until sufficient free log space is available.

Limiting the number of dirty regions

All dirty regions are on a per file system list sorted by
the LSN of the last modifying transaction.

By flushing dirty regions in reverse order we can limit
the number of dirty regions by flushing out regions that
were not recently used.

This limits the size of the checkpoint record while
preventing recently used regions to be flushed.

A small checkpoint record means faster recovery since
less regions need to be recovered.

Recovery (STEP 1)
Finding the most recent Checkpoint

* Recovery starts by reading the log anchors.

 The most recent log anchor is used as a
starting point into the circular log and points
to a checkpoint record.

« Starting at this checkpoint record the log is
sequentially read and scanned for checkpoint
records until the end of the log is reached.

(log anchors may become optional to eliminate
a write dependency in which case the whole
log is scanned to find the most recent
checkpoint)

Recovery (STEP 2)
Updating the checkpoint information

Beginning at the last checkpoint record all intend
records from transaction that are stable are read and

analyzed.

Intend records that describe regions not in the checkpoint will
cause the region to be added to the checkpoint.

Intend records that describe fragments being freed will remove
remove the freed regions from the checkpoint.

Recovery (STEP 3)
Recover regions described in the
checkpoint

Beginning at the oldest intend record needed by any
checkpoint record all intend records from transaction

that are stable are read and analyzed.

Intend records that describe regions not in the checkpoint will be
ignored since they are not needed for recovery.

All other Intend records will be read and the idempotent operation
will be applied to the disk region.
Checkpoint records will be ignored.

Recovery (STEP 4)
Repair circular log

Out of order and incomplete writes may leave sectors
ahead of the log head with a valid sequence number for
the next block write operations.

Before writing any new log blocks the sequence
numbers of these sectors need to be invalided.

Recovery (STEP 5)
Flush all data to disk

Dirty regions recovered during Step 3 are flushed to
disk.

Recovery (STEP 6)
Write new empty checkpoint

Write new empty checkpoint since all recovery work is
done and the log can be truncated.

Update log anchors if enabled.

Recovery (STEP 7)

Read the complex restartable operation array from disk
and restart operations in non empty slots.

The file system is now completely recovered.

Building Transactions

So far we have only talked about
consistency of completed transaction.

However transaction need to be build by
file system operations and transactions
may not complete when the file system
operation detects an error.

File system operation view of
a transaction

A file system operation uses a transaction
structure to build a transaction.

It adds change records to a list contained in the
transaction structure.

These change record indicate data changes to
an in memory dirty region.

Each change record belongs to single
transaction and modifies a single dirty region.

Each dirty region has list of change records that
plan to modify the region.

Update in memory

A change record describes a modification to an

on disk region. But it is also used to modify the in
memory copy of the dirty region.

While on disk regions can not be modified before a
transaction is stable the in memory copy of the data can
be updated.

The change records support updating the in memory
copy of the regions at three different times.

Modifying the in memory
region immediately

Change records support modifying the in memory disk
region immediately.

This requires the change to be permanently undone if
the transaction does not complete or temporary undone
if the region needs to be flushed to disk.

A change record contains all the information for undoing
and redoing changes.

Modifying the in memory region at
transaction completion time

Change records support modifying the in memory disk
region once the transaction wrote its intend records to
be log buffer.

The change record contains all the information for
applying the change.

This is used to prevent race conditions on released
resources when reuse can cause race conditions with
concurrent transactions.

Modifying the in memory region once the
transaction is stable.

Change records support modifying the in memory disk
region once the transaction is stable.

The change record contains all the information for
applying the change.

This is used to prevent race conditions on released
fragments when they are reused as a data buffer and as
such do not participate in WAL.

Canceling a transaction

A transaction can be canceled at any time before it
completes.

Canceling transactions requires rolling back in memory
changes.

This is done by iterating through all change records of a
the transaction in their reverse creation order.

Any modification described in an immediate change
record needs to be undone.

All change records and the transaction structure are
released.

Completing a transaction

Completing a transaction is done by iterating through all
change records.

Each change record contains enough information to
generate an intend log record that is written to the log
buffer. The last intend record will contain an end of
transaction flag.

The dirty regions will be updated with new LSN
information about the written intend log entries.

The in memory dirty regions is updated if the change
record requires it.

Most change records and the transaction structure are
released.

Availability

Bluffs was scheduled to be released for testing in Q1.
-But | had some very good excuses for being late

Bluffs is now being scheduled to be released for testing
in Q2.

- Unless | acquire another set of good excuses

