
puffs - Pass-to-Userspace
Framework File System

AsiaBSDCon 2007
Tokyo, Japan

Antti Kantee

pooka@cs.hut.fi

Helsinki University of Technology

Antti Kantee<pooka@cs.hut.fi> : 1

Talk structure
• what is puffs?
• why do we care?
• puffs architecture overview
• kernel and transport mechanism
• userspace components
• example file systems
• measured performance figures
• compatibility
• future work
• conclusions

Antti Kantee<pooka@cs.hut.fi> : 2

Introduction to puffs
Pass-to-Userspace Framework File System

• passes file system interface to userspace
and provides a framework

• kernel interface: VFS
• userspace interface: almost VFS
• userspace library provides convenience

functions such as continuation support
• NetBSD-current (4.0 will have some support)

Why the name puffs?
• puff pastry, increases in volume when baked

Antti Kantee<pooka@cs.hut.fi> : 3

Why userspace file systems
• fault tolerance and isolation: one error

doesn’t bring the system down
• easier to program

• easier to test
• easier to debug, single-step and do

iteration
• do we really need all the error-prone

namespace management for example for
procfs in the kernel?

• libraries and pre-existing software: most of
the time written against POSIX instead of the
BSD kernel

Antti Kantee<pooka@cs.hut.fi> : 4

puffs architecture
1. vfs module mar-

shalls request

2. requests are trans-
ported to userspace

3. library decodes and
dispatches request

4. file server handles
request

• result passed back

application

kernel

vfs module (1)

libpuffs (3)

file server (4)

syscall

/dev/puffs (2)

user

kernel

user

Antti Kantee<pooka@cs.hut.fi> : 5

VFS module
• attach puffs to kernel like all file systems
• interpret incoming requests, convert to

transport-suitable format and queue request
to file server

• police duty making sure file server plays nice
• vnode -> file server node -> vnode handled

with cookies, file server selects cookie value
when it creates a node

• short-circuit unimplemented operations
• integrate to UBC
• snapshot support

Antti Kantee<pooka@cs.hut.fi> : 6

Messaging format
• nothing to write a slide about yet
• a bunch of structs with manual accessors, no

real constructors or destructors or anything
of the sort

• all structs "subclassed" from the transport
frame header struct puffs_req

• used within the kernel and libpuffs, actual file
systems get a decoded interface

Antti Kantee<pooka@cs.hut.fi> : 7

Transport: /dev/puffs
• device opened once per file system instance
• file server driven operation

• get: fetch a request, move it to queue
waiting for responses

• put: results for a request fetched by
getop, not done for all requests

• flush: flush or purge kernel cache
• suspend: file system snapshots

• can transport multiple requests per single
getop or putop kernel call

• tries to minimize amount of copys required

Antti Kantee<pooka@cs.hut.fi> : 8

User library
• provides basic programming interface for the

library, plus a bunch of convenience routines
• file system implementation is a bunch of

callbacks, much like with vfs
• file server should call puffs_mount(),

execute necessary operations and either
pass control the puffs or fetch and put
requests by itself using library functions
• some backends require constant fondling

such as with TCP sucket buffers
• other backends always execute

everything "instantly"

Antti Kantee<pooka@cs.hut.fi> : 9

file system interface
• almost vfs, not quite
• missing some operations such as revoke()

and get/putpages()
• all operations get struct puffs_cc * as

an opaque library context
• vnode operations additionally receive cookie

value: either parent directory cookie or node
cookie, depending on operation

• rest of the parameters mimic their kernel
counterparts, e.g. kauth_cred_t ->
puffs_cred *

Antti Kantee<pooka@cs.hut.fi> : 10

pathnames
• kernel file systems operate on the concept

that lookup provides a node and then forget
about pathnames except for operations
which operate in a directory

• for some user file servers, full pathnames are
useful, e.g. sshfs

• puffs provides them as an optional
component under the same interface

• also possible to provide own path-generating
routines, such as for "rot13fs", or even
something completely different like sysctl
MIB names

Antti Kantee<pooka@cs.hut.fi> : 11

continuations
• all file system operations do not finish

instantly, usually no point in waiting
synchronously

• threads could be used but they suck
• support continuations in libpuffs
• like threads, but explicitly scheduled with
puffs_yield() and puffs_continue()

• file systems need to implement some hook
from request response to continue

• need to drive file system backend I/O and
puffs requests from an event loop
• there’s only one thread, remember

Antti Kantee<pooka@cs.hut.fi> : 12

continuations continued
• automatically

unwind stack to
"top" of library

• jump right back in
with local variables
and entire stack like
you left it

• library code was
taxing to write, but
programming is
easy

• yield() + continue()
"just work"

event
loop

puffs
req_handle()

function 1

function 2

1.

2.

3.

4.
yield()

n+1.
continue()

n+2.

n+3.

n+4.

Antti Kantee<pooka@cs.hut.fi> : 13

psshfs
• second version of

sshfs written on
top of puffs

• uses
continuations

• multiple
outstanding
operations

• faster than nfs in
some conditions

event
loop

network
output

network
input

kernel

executing
operation

waiting op

waiting op

...

readwrite

continue

continue()

yield()

handle()

enqueue

Antti Kantee<pooka@cs.hut.fi> : 14

other file systems
• dtfs - delectable test file system

• or détrempe file system, if you want to
stay true to puffs

• sysctlfs - map sysctl namespace to a file
system

• nullfs - operation like kernel nullfs.
implemented in libpuffs with just a little
frontend file system. nice for measurements

• rot13fs - present names and data of a
mounted directory hierarchy as rot13

Antti Kantee<pooka@cs.hut.fi> : 15

Development experiences
• some-other-namespace to file system can

usually be written in about a day’s worth of
work
• this assumes a little familiarity with the

system
• safe(ish ;-) to do file system development on

desktop machine
• debugging nice and easy

Antti Kantee<pooka@cs.hut.fi> : 16

Experimental results 1
•• test extraction of kernel compilation directory

(127MB, > 2000 files)

tmpfs (s) dtfs (s) diff (%)
single 3.203 11.398 256%
double 5.536 22.350 303%

ffs (s) ffs+null (s) diff (%)
single 47.677 53.826 12.9%
double 109.894 113.836 3.6%

Antti Kantee<pooka@cs.hut.fi> : 17

Experimental results 2
• read of large file, uc : uncached, c : cached,

bc : backend cached

system (s) wall (s) cpu (%)
ffs (uc) 0.2 11.05 1.8
null (uc) 0.6 11.01 5.9
ffs (c) 0.2 0.21 100.0
null (c) 0.2 0.44 61.6
null (bc) 0.6 1.99 31.7

Antti Kantee<pooka@cs.hut.fi> : 18

FUSE compatibility: refuse
Is it pronounced REfuse, reFUSE or REFuse?
who knows ;-)

• FUSE interface is widely spread
• supporting it is definitely a good thing, but

don’t want to be limited by it
• solution: write compat layer on top of libpuffs
• agc initiated refuse project
• xtraeme added support to pkgsrc
• NetBSD can now run e.g. ntfs-3g installed

from pkgsrc

Antti Kantee<pooka@cs.hut.fi> : 19

Future work
• improve layering support in userspace
• make transport interface more generic
• write message specification in non-C
• support distributed vfs routing in userspace

• and 9P while you’re (I’m) at it
• (semi-)formally verify that vfs module does

not expose anything dangerous to userspace
• make it clear what is expected of file

systems, provide tools for it
• currently it’s only clear if you’ve written a

couple of file systems

Antti Kantee<pooka@cs.hut.fi> : 20

More work
• adapt kernel portion to NetBSD’s new

locking primitives
• create tools for easy creating of file system

namespaces
• makes away with need to have

homegrown struct array hacks in every
fictional file system

• make interfaces more kernel-like (or make
kernel more interface-like)
• compile and run same code for kernel or

userspace
• simplification vs. unification

Antti Kantee<pooka@cs.hut.fi> : 21

Wrapup
• userspace components provide isolation,

fault tolerance and development comfort
• performance is the tradeoff, but usually

hidden by I/O cost
• and these days, most of the time you

simply Just Don’t Care
• current version of puffs works, but interfaces

are not yet promised to be stable
• possible to run file systems taking advantage

of the native interface or FUSE file systems
using puffs + refuse

Antti Kantee<pooka@cs.hut.fi> : 22

Interested? Get involved!
• if you’re running NetBSD-current, add
MKPUFFS=yes to /etc/mk.conf, try out
mount_psshfs and pkgsrc stuff, file bug
reports

• write new file systems (but do be prepared to
change them slightly until the interface
stabilizes)

• propose ideas for new features
• hype it so that people finally get rid of silly

microkernel antipathies ;-)

Antti Kantee<pooka@cs.hut.fi> : 23

	Talk structure
	Introduction to puffs
	Why userspace file systems
	puffs architecture
	VFS module
	Messaging format
	Transport: 	exttt {/dev/puffs}
	User library
	file system interface
	pathnames
	continuations
	continuations continued
	psshfs
	other file systems
	Development experiences
	Experimental results 1
	Experimental results 2
	FUSE compatibility: refuse
	Future work
	More work
	Wrapup
	Interested? Get involved!

