
SHISA: The Mobile IPv6/NEMO BS Stack Implementation

Current Status

Keiichi Shima, Internet Initiative Japan Inc., Japan, keiichi@iijlab.net
Koshiro Mitsuya, Keio University, Japan, mitsuya@sfc.wide.ad.jp
Ryuji Wakikawa, Keio University, Japan, ryuji@sfc.wide.ad.jp

Tsuyoshi Momose, NEC Corporation, Japan, momose@az.jp.nec.com
Keisuke Uehara, Keio University, Japan, kei@wide.ad.jp

Abstract

Mobile IPv6 and Network Mobility Basic Support
(NEMO BS) are the IETF standard mobility proto-
cols for IPv6. We implemented these protocols and
we call the implementation SHISA. SHISA supports
most of the features in these mobility protocol specifi-
cations and has high level interoperability with other
stacks compliant to the specifications. We are now
working towards adapting the SHISA code to fit the
latest BSD source tree. In this paper we explain the
detailed implementation design of the stack, current
status of the porting work and the future plans of our
project.

1 Introduction

The rapid growth of the IPv4 Internet raised a concern
of the IPv4 address exhaustion. IPv6 was designed as
the essential solution of the problem. We are now on
the transition period from the IPv4 Internet to the
IPv6 Internet. As a result of the transition, a vast
number of IPv6 devices connected to the Internet us-
ing various communication technologies will appear
in the future. The devices will not only be computers
and PDAs but also cars, mobile phones, sensor devices
and so on. Since many devices will potentially move
around changing its point of attachment to the Inter-
net, mobility support for IPv6 is considered necessary.
The IETF has discussed the protocol specification and
finally standardized two IPv6 mobility protocols, Mo-
bile IPv6 [1] for host mobility and Network Mobility
Basic Support (NEMO BS) [2] for network mobility.

When we deploy a protocol, it is one of the efficient
ways to provide the protocol stack as open source soft-
ware. The developers of the protocol stack can get
many feedback from worldwide users and can enhance
their implementation. We implemented the mobility
protocol stack, called SHISA1 [3, 4], that supports
both Mobile IPv6 and NEMO BS to provide a full

1SHISA was named after a traditional roof ornament in Ok-
inawa Japan, where we had the first design meeting.

featured mobility stack on top of BSD operating sys-
tems as a part of the KAME project activity [5], and
released the stack as open source software. After the
KAME project concluded in March 2006, we started
to adapt the stack to fit the latest BSD tree aiming to
merge the mobility code.

This paper presents the current status of our work
on IPv6 mobility and future plans. We will provide the
basic knowledge of Mobile IPv6 and NEMO BS in Sec-
tion 2 and discuss the design principle and implemen-
tation detail in Section 3 and 4. Section 5 discusses
the remaining stuffs to be designed and implemented
to give advanced mobility features and also discusses
the future plans of our project. Section 6 concludes
this paper.

2 Mobile IPv6 and NEMO BS
Overview

Mobile IPv6 is a protocol which adds a mobility func-
tion to IPv6. Figure 1 illustrates the operation of
Mobile IPv6. In Mobile IPv6, a moving node (Mobile
Node, MN) has a permanent fixed address which is
called a Home Address (HoA). HoAs are assigned to
the MN from the network to which the MN is orig-
inally attached. The network is called a Home Net-
work. When the MN moves to other networks than
the home network, the MN sends a message to bind
its HoA and the address assigned at the foreign net-
work. The message is called a Binding Update (BU)
message. The address at the foreign network is called
a Care-of Address (CoA) and the networks other than
the home network are called Foreign Networks. The
message is sent to a special node, called a Home Agent
(HA) located in the home network. The HA replies to
the MN with a Binding Acknowledgement (BA) mes-
sage to confirm the request. A bi-directional tunnel
between the HA and the CoA of the MN is established
after the binding information has been successfully ex-
changed. All packets sent to the HoA of the MN are
routed to the home network by the Internet routing
mechanism. The HA intercepts the packets and for-

1

Mobile Node (MN)

Home Agent (HA)

Home Network Foreign Network

Move

Care-of Address (CoA)Home Address (HoA)

Internet

Correspondent Node (CN)

Communication

MN - CN
Bi-directional

Tunnel

Binding Update

(HoA - CoA)

Binding Acknowledgement

Figure 1: Basic Operation of Mobile IPv6.

wards them to the MN using the tunnel. Also, the
MN sends packets using the tunnel when communi-
cating with other nodes. The communicating nodes
(called as Correspondent Nodes, CN) do not need to
care about the location of the MN, since they see the
MN as if it is attached to the home network.

In Figure 1, the communication path between the
MN and its peer node is redundant since all traffic is
forwarded through the HA. Mobile IPv6 allows an MN
to optimise the path to an IPv6 node which is aware
of the Mobile IPv6 protocol by sending a BU mes-
sage. When an MN send a BU message to a CN, the
MN must perform a simple address ownership verifi-
cation procedure called Return Routability (RR). The
MN sends two messages (Home Test Init (HoTI) and
Care-of Test Init (CoTI) messages) to the CN, one
from its HoA and the other from its CoA. The CN
responds these two messages with Home Test (HoT)
and Care-of Test (CoT) messages with cookie values.
The MN then generates secret information using these
two cookies and sends a BU message cryptographically
protected with the secret information. Once the CN
accepts the BU message, the MN can directly send a
packet to the CN from its CoA. To provide the HoA
information to the CN, the MN stores its HoA in a
Destination Options Header as the Home Address op-
tion (HAO). The option is newly defined in the Mobile
IPv6 specification. The CN can also directly send a
packet to the MN using the Routing Header Type 2
(RTHDR2), which is a new type of a routing header.
This direct path is called a Route Optimized (RO)
path.

NEMO BS is an extension of Mobile IPv6. The
basic operation of a moving router (Mobile Router,
MR) is same as that of an MN except the MR has
a network (Mobile Network) behind it. The network

Home Agent (HA)

Home Network Foreign Network

Move

Internet

Correspondent Node (CN)

Communication

MNN - CN

Bi-directional

Tunnel

Home Address

Mobile Network Mobile Network

Care-of Address

Binding Update

(HoA - CoA,Mobile Network Prefix)

Mobile Network Nodes (MNNs)

Binding Acknowledgement

Figure 2: Basic Operation of NEMO BS.

prefix is called a Mobile Network Prefix (MNP). A
node in the mobile network, which is called a Mobile
Network Node (MNN), can communicate with other
nodes as if they are attached to the home network,
thanks to the tunneling between the HA and the MR.
NEMO BS does not provide the RO feature. Figure 2
depicts the operation of NEMO BS.

3 SHISA Design

Mobile IPv6 and NEMO BS are layered between the
Network Layer and Transport Layer. The first version
of our mobility stack, known as the KAME Mobile
IPv6 stack, was implemented as a part of the kernel as
other Network Layer and Transport Layer protocols.

When the Mobile IPv6 specification was published
as an RFC, we were considering to extend the features
of the mobility stack. We thought it would not be a
good idea to keep all mobility functions in the ker-
nel, considering its extensibility and maintainability2.
We redesigned the entire stack and moved most of the
protocol functions to user space. In the process of
redesign, we also referred the basic design of another
Mobile IPv6 stack (SFCMIP [7]) for BSD that was
being developed at Keio University. The remaining
functions in the kernel was packet forwarding process-
ing. All the mobility signal processing and binding in-
formation management processing were moved to user
space. The design gives us the following benefits.

• Easy development and maintenance: Since the
signaling processing of Mobile IPv6 and NEMO

2There was a separate project that provided a NEMO BS im-
plementation [6] based on the KAME Mobile IPv6 stack, which
was also implemented in the kernel.

2

BS is complicated, it is better to implement it
in user space. We can develop and debug the
complex part of the protocol easier than doing it
in the kernel, without reducing packet forwarding
performance.

• Extensibility for additional features: Developing
user space programs is easier than the kernel pro-
gramming in most cases and for most users. Mov-
ing the core mobility implementation from the
kernel to user space will encourage third party
developers to add new features.

• Minimum modification of the kernel code: When
considering to merge the developed code into
BSD trees, the smaller amount of kernel modi-
fication is the better. Moving signaling part to
the user space reduces the amount of kernel mod-
ification.

In the user space, we also divided the entire stack
into 6 pieces as follows.

• MN functions

• MR functions

• HA functions

• RO responder functions

• Movement detection functions

• NEMO BS tunnel setup functions

The design allows users to chose only necessary com-
ponents when they build mobility aware nodes. For
example, if one wants to build an MN that does not act
as an RO responder, he can disable it. The design also
allows to replace components with their own imple-
mentation. Especially, the ability to replace the move-
ment detection mechanism is useful when deploying
mobility services in a specific network infrastructure
that supports a good movement detection mechanism,
such as the Layer 2 movement notification scheme. In
that case, the system integrator can create a special
movement detection program, keeping other signaling
processing code untouched.

The components, including the kernel, communi-
cate each other through a newly designed socket
domain dedicated to mobility information exchange.
When a user program put some information (e.g.
binding information) to the kernel, this socket domain
is used. The socket domain is used to exchange such
information between user space programs too. It can
also be used as a notification mechanism from the ker-
nel to user space programs. When the kernel has to

notify information that can only be retrieved inside
the kernel, such as extension header processing errors
or tunneled packet input events, the kernel writes the
event information to the socket domain so that all the
listening programs of the socket in user space can re-
ceive the event data.

4 Implementation

SHISA was originally developed on top of the KAME
IPv6 stack [9] for NetBSD 2.0 and FreeBSD 5.4. We
ported SHISA to the NetBSD-current tree as the first
step of porting effort. There are two reasons why we
chose NetBSD as the first platform for the porting
work. The first reason is that it supports various kinds
of architectures. The mobility functions are useful es-
pecially when it is integrated to a moving entities such
as PDAs and cars or trains, and so on. They usually
use an architecture that runs with limited resources.
NetBSD supports many such architectures that is suit-
able for embedded use, and we wanted to realize such
small devices using our code. The other reason is the
difference between the KAME tree (that was based
on NetBSD 2.0) and the latest NetBSD is relatively
small compared to other BSD variants that KAME
supported. This makes it easier to port the SHISA
code from KAME to NetBSD-current.

Figure 3 shows the relationship of the SHISA mod-
ules. The objects with solid lines are newly imple-
mented modules. The dotted line objects exist in the
original BSD system and the shaded ones of them have
been modified for the SHISA system.

There are 6 user space programs; mnd, babymdd,
cnd, mrd, nemonetd and had. Each program han-
dles, the MN signaling messages, the movement de-
tection procedure, the RO responder signaling mes-
sages, the MR signaling messages, the tunnel setup
procedure for NEMO BS, and the HA signaling mes-
sages respectively. The binding database that corre-
sponds the HoA and CoA of an MN is maintained by
mnd and mrd on the MN/MR side, and by cnd and
had on the CN/HA side. The subset information of
the databases that is necessary for the packet input
and output processes in the kernel is injected by these
programs using the Mobility socket discussed in Sec-
tion 4.1.

The communication interface used between the ker-
nel and the user space programs, and between the
user space programs is provided by the newly im-
plemented Mobility socket domain (AF MOBILITY).
The mechanism and message formats used in the do-
main are similar to the Routing socket [10]. Unlike
the Routing socket, we use this socket to exchange

3

babymddmnd hadnemonetdmrd cnd

Binding
Management

Module

Mobility Socket Routing Socket

Address
Management

Module

Neighbor
Discovery Module

Forwarding
Module

Binding
Update

Database
(Subset)

Binding
Cache

Database
(Subset)

Routing Table
Management

Module

Routing
Table

user

space

kernel

space

Binding
Update

Database

Binding
Cache

Database

Destination
Options Header

Module

Routing Header
Module

Tunneling Module

Figure 3: The relationship of the SHISA modules.

mobility related information even between user space
programs. For example, the movement detection pro-
gram (babymdd) uses this socket to notify other pro-
grams of movement events through the socket when it
considers the node is attached to a new network. The
socket is also used as a broadcasting channel from the
kernel to user space programs. For example, when the
kernel of a mobile host receives a tunneled packet from
a correspondent node, it notifies the mnd program of
the fact so that it can start the route optimization
procedure. Such information is not usually available
from the user space.

We created two new pseudo interfaces, mip and
mtun. The mip interface represents the home network
of an MN/MR and keeps HoAs of the node. If an
MN/MR has more than one home network, the node
will have multiple mip interfaces. The mtun interface
is used as a tunnel interface between an MR and its
HA. The interface is basically a copy of the gif in-
terface with some extension to keep the next-hop in-
formation of the interface. The mtun interfaces are
controlled by the nemonetd program based on the
signaling messages exchanged between an MR and an
HA by monitoring the Mobility socket. The mip and
mtun interfaces are discussed in Section 4.2 and 4.3

respectively.
Mobile IPv6 and NEMO BS extended IPv6 exten-

sion headers. These protocols use a new destina-
tion option (HAO) and a new routing header type
(RTHDR2). The processing code is implemented by
extending the existing extension header processing
code in the kernel, because these headers cannot be
handled in user space. The normal packets, that are
not mobility signal messages, are automatically pro-
cessed based on the binding information stored in the
kernel by the extended processing code. The signaling
packets are sent and received by the user space pro-
grams using the socket API specified in RFC4584 [11].

4.1 Mobility Socket: AF MOBILITY

The Mobility socket [8] is implemented as a variant of
the raw sockets. The usage of this socket is similar to
that of the Routing socket. The mobility socket can
be opened as follows.

s = socket(AF_MOBILITY, SOCK_RAW, 0);

At the this moment, there are 12 message types as
shown in Table 1.

4

Type Description

NODETYPE_INFO Set or reset the operation mode
(MN, MR, HA or CN).

BC_ADD Add a binding cache entry.

BC_REMOVE Remove a binding cache entry.

BC_FLUSH Remove all binding cache entries.

BUL_ADD Add a binding update list entry.

BUL_REMOVE Remove a binding update list en-
try.

BUL_FLUSH Remove all binding update list en-
tries.

MD_INFO A hint message that indicates the
movement of an MN.

HOME_HINT A hint message from the kernel
that notifies returning home of an
MN from the kernel.

RR_HINT A hint message from the kernel
that indicates receiving or sending
a bi-directional packet.

BE_HINT A hint message from the kernel
that an error message has to be
sent due to protocol processing er-
ror in the kernel.

DAD Request the kernel to perform the
DAD (Duplicate Address Detec-
tion) procedure for a specific ad-
dress.

Table 1: The Mobility socket message types.

The NODETYPE_INFO message enables (or disables)
mobility functions in the kernel. The user space pro-
grams issue this message to enable (or disable) spe-
cific mobility processing code in the kernel, for exam-
ple, the mnd program issues this message to enable
mobile node functions in the kernel such as the bind-
ing update list management and the extension header
processing. The BC_* messages are used by the had
and cnd programs to add or remove binding cache
entries in the kernel. The BUL_* messages are used
for binding update list entries by the mnd and mrd
programs similarly. The MD_INFO message is issued
by the babymdd program to notify the node move-
ment of the mnd or mrd program. As discussed ear-
lier, any system integrator can prepare their specific
movement detection program that issues the MD_INFO
message for better or optimized performance of the
node movement. The *_HINT messages are issued by
the kernel to notify the events that cannot be obtained
in user space of user space programs. The HOME_HINT
message is issued when an MN/MR returns home by
comparing received prefix information in a Router Ad-
vertisement message and the configured home network
prefix. When receiving this message, the MN/MR
stops mobility functions.

Flag Description

IN6_IFF_HOME The address is an HoA.

IN6_IFF_DEREGISTERING The address is being
de-registered.

Table 2: The address flags used by an HoA.

The address information in these messages are
stored in the form of the sockaddr structure so that
any kind of address family can utilize this socket mech-
anism. IPv6 is the only supported address family at
this moment.

4.2 The mip Interface and Home Ad-
dress

The mip interface represents the home network of an
MN/MR. This interface is used to keep the HoAs of an
MN/MR when the node is in foreign networks. The
HoAs are assigned to the physical network interface
attached to the home network of the MN/MR while it
is at home. However the physical interface is used to
attach to a foreign network when the node leaves from
the home network. In this case, the HoAs are moved
from the physical interface to the mip interface.

The address assigned as an HoA has special flags as
shown in Table 2. All HoAs have the IFF_HOME flag.
The IFF_HOME flag is used by the source address selec-
tion procedure to prefer an HoA as a source address.
The IFF_DEREGISTERING flag is used in the return-
ing home procedure. The IFF_DEREGISTERING flag is
added while an MN/MR is performing de-registration
procedure of its HoA when it returns to home. Until
the procedure has successfully completed, the HoA is
not valid and is not used for communication.

4.3 The mtun Interface

The mtun interface is used when the NEMO BS func-
tion is used. This interface is used by an MR and an
HA to create an unnumbered tunnel between them.
The physical endpoint address of the tunnel is the CoA
of the MR and the HA’s address. On the HA, the traf-
fic addressed to the mobile network of the MR is sent
to the mtun interface established between it and the
MR that manages the mobile network. On the MR,
the mtun interface is set as the default route of the
outgoing packets. All packets generated by the MR
or the nodes in the mobile network of the MR will be
tunneled to the HA.

Since the mtun interface is used as the default route
on the MR, the loop condition occurs if we do not
specify the next hop router when sending tunneled
packets. Figure 4 shows the situation. When the MR

5

Mobile
Router

Internet

Mobile
Network

Nexthop
Router

Home
Agent (HA)

mtun

tunnel

IPv6 (src=MNN, dst=CN)

4. route lookup for HA default (mtun)

IPv6 (src=MNN, dst=CN)IPv6 (src=CoA, dst=HA)

2. route lookup for CN default (mtun)

1. packet input from MNN

3. encapsulate by mtun

loop

MNN

CoA

Figure 4: The loop of a tunneled packet.

sends a packet to the default route that is the mtun
tunnel, the MR creates an encapsulated packet whose
outer source is its CoA and the outer destination is the
HA. The output function of the encapsulated packet
will try to send it based on the routing table and it
will try to send it to the default route again.

To avoid this problem, the mtun interface keeps the
next hop router’s address in its interface structure.
The information is retrieved from the default router
list managed by the kernel. The nemonetd program
checks the default router list and picks up one of them
that are attached to the same network as the CoA of
the MR. The next hop information is stored by the
nemonetd program using I/O control message of the
mtun interface. When sending an encapsulated packet,
the output function of the mtun interface will add the
next hop information as an IPv6 packet option.

As we have mentioned already, the mtun interface is
originally copied from the gif interface. The only dif-
ference is the next hop information storing mechanism
and output mechanism using the information.

4.4 Sending and Receiving Signaling
Messages

All the signaling messages are processed by the user
space programs. The signaling messages are carried
by the Mobility Header which is introduced by the
Mobile IPv6 specification. Although the header is de-
fined as one of the IPv6 extension headers, it is treated
as a final header at this moment. Therefore, there is
no following upper layer or other extension headers

after a Mobility Header. To support this header, we
implemented a simple input validation routine in the
kernel and used the raw IPv6 packet delivery mech-
anism. The Mobility Header processing function is
added using the protocol switch mechanism. When a
packet whose last header is a Mobility Header (pro-
tocol number 135) is input, then the mip6_input()
function is called.

As shown in the following code fragment, the
mip6_input() function performs the validation check
of the input packet and calls the raw IPv6 input func-
tion (rip6_input()) to deliver the packet to applica-
tions. The application with the Mobility socket will
receive all Mobility Header messages.

int

mip6_input(mp, offp, proto)

struct mbuf **mp;

int *offp, proto;

{

validation of the input packet.

/* deliver the packet using Raw IPv6

interface. */

return (rip6_input(mp, offp ,proto));

}

When sending a Mobility Header packet, the same
output function as that of the raw IPv6 socket
(rip6_output()) is used.

4.5 Extension Header Processing

The Mobile IPv6 specification defines a new destina-
tion option, the HAO option, to carry the HoA of an
MN to an HA or a CN, and the RTHDR2 to deliver
packets to an MN directly from an HA or a CN. We
simply extended the existing code to support these
new messages, since both Destination Options Header
and Routing Header processing code had been already
implemented as a basic IPv6 feature in NetBSD.

The input processing code of the HAO option is
implemented in the dest6_input() function. The
function checks an HAO option and related binding
cache entry of the HoA included in the HAO option.
If the cache entry exists, the source address of the
input packet and the HoA are swapped. The trans-
port layer and above layer will process the HoA as the
source of the packet. Note that this operation is a
kind of source spoofing operation and we need to ver-
ify the operation is safe. The existence of the binding
cache entry is used for the validation.

The exception of the swapping is a BU message.
A BU message has an HAO option to request a peer
node to create a binding cache entry that binds the

6

HoA in the HAO option and the CoA stored in the
source address field of the IPv6 header. When a node
receives a BU message first time, there is no binding
cache entry, and we cannot rely on the cache existence
to validate the message. In the Mobile IPv6 specifica-
tion, it is specified that a BU message is protected by
some cryptographic mechanisms. When an MN sends
a BU message to its HA, the message is protected by
the IPsec mechanism. When an MN sends a BU mes-
sage to a CN, the message is protected by the secret
created through the RR procedure. If a bogus MN
tries to send a BU message to a victim HA, then the
message will be dropped during the IPsec header pro-
cessing. If a bogus MN tries to send a BU message to
a CN, then the message will be delivered to the cnd
program because it does not have any IPsec headers.
The cnd program checks if the message is protected
by the secret created by the RR procedure, and drop
it if it is not protected. Once the message is accepted,
the had or cnd program creates a new binding cache
entry for the message. The following packets with an
HAO option will be accepted.

The input processing of the RTHDR2 is imple-
mented in the route6_input() function. The func-
tion calls the rthdr2_input() function when the
type number of the input routing header is 2. The
RTHDR2 includes the HoA of an MN. The basic pro-
cedure is same as that of the Type 1 Routing Header
(RTHDR1). The destination address of the input
IPv6 header and the address in the Routing Header
are swapped. Unlike the RTHDR1, the RTHDR2
only include one address and the address must be
an HoA. The rthdr2_input() validates the RTHDR2
and swaps the addresses if it is valid. Since the origi-
nal IPv6 destination address (which is the CoA of an
MN) and the address in the RTHDR2 (the HoA of the
MN) both belong to the same MN, a peer node can
send a packet directly to the MN without using the
tunnel established between the MN and its HA.

The output processing of these headers is handled
by the ip6_output() function. Since the mobility
functions are transparent to all the applications, the
packet passed to the ip6_output() function does not
have any mobility related data, except signaling pack-
ets that are handled in the user space programs and
have extension headers specified by the user space pro-
grams. The ip6_output() function checks binding
update list entries and binding cache entries at the be-
ginning of the packet processing, and inserts a HAO
and/or a RTHDR2 if there is a binding entry related
to the addresses of the outgoing IPv6 packet. For ex-
ample, if the packet’s source address is the HoA of
an MN and the MN has a valid binding update list
entry of the HoA, then a HAO option, that includes

the CoA of the MN stored in the binding update list
entry, is created and inserted to the outgoing packet.
Similarly, a RTHDR2 is also inserted if there is a valid
binding cache entry that is related to the destination
address of the outgoing packet.

4.6 Tunneling

When an MN/MR sends packets to CNs, or when an
MR forwards packets from its mobile network to the
nodes outside, the nodes encapsulate packets to its
HA using the tunnel established between them. The
same operation is performed in the reverse direction.
In the SHISA stack, we use two different encapsulat-
ing mechanisms for tunneling. One is the mechanism
for packets sent/delivered to a moving node itself, the
other is for packets sent/delivered to the nodes in a
mobile network.

In fact, these two tunnels have the same function.
The reason why we have two different tunnels is that
the stack has been build step-by-step based on the pre-
vious KAME Mobile IPv6 design. In KAME Mobile
IPv6 that did not support NEMO BS, the tunneling
was implemented as a part of packet processing in the
kernel. SHISA re-used the design as a Mobile IPv6
tunneling mechanism. When we started implementing
NEMO BS in SHISA, we chose to use a specific tunnel
interface (the mtun interface) as a tunneling mecha-
nism for mobile network nodes, so that the nemonetd
programs can easily control the tunnel endpoints. We
do not think the current design is the best and keep
discussing to revise the design. Section 5 mentions
this topic further.

Figure 5 shows the output flow of tunneling packets
on an MN/MR. When an MN sends a tunneled packet,
the mip6_tunnel_output() function is used. For the
forwarding packets from the mobile network of an MR,
the mtun_output() which is the output function of the
mtun interface is used instead.

Figure 6 shows the input flow of tunneling pack-
ets on an MN/MR. Similar to the output case,
the tunneled packets sent to the moving node it-
self is processed by the special input function
mip6_tunnel_input(). For the forwarding packets to
the mobile network nodes, the mtun_input() function
handles tunneled packets.

4.7 Intercepting Packets

Thanks to the backward compatibility of Mobile IPv6,
all IPv6 nodes can communicate with an MN/MR or
nodes inside the mobile network of the MR. In this
case, all packets sent to the moving entities are routed
to the home network of them. The HA of these mov-

7

upper layer
output function

ip6_output()

nd6_output()

mip_output() mtun_output()

ip6_output()

set next
hop router

datalink layer
output function

nd6_output()

original
packet

processing

tunneled
packet

processing

forwarding
from MNP on

MR
MN

encapsulate

ip6_forward()

Figure 5: The output flow of a tunneled packet on an
MN/MR.

ing entities have to intercept the packets and forward
them properly.

When an HA intercepts packets sent to the HoA of
an MN or MR, the HA uses proxy Neighbor Discovery
mechanism. The proxy is started after the HA receives
a valid BU message for registration from the MN/MR,
and is stopped when it receives a de-registration BU
message. The intercepted packets are forwarded using
the tunneling mechanism. In contrast to the packets
sent to HoAs, the packets sent to the mobile network
of the MR are processed by the normal forwarding
mechanism. The HA has a routing entry for the MNP
whose outgoing interface is set to the tunnel interface.
Figure 7 shows the flow.

The input processing of the tunnel packets at
an HA is a simple forwarding processing. The
only difference is that the packets originated by an
MN/MR itself are input by the special input function
mip6_tunnel_input(). Figure 8 shows the flow. The
mip6_tunnel_input() function is defined as a part
of the protocol switch structure for Mobile IPv6 as
shown in Figure 9. The protocol switch structure is
used internally in the kernel when the Mobile IPv6
function is enabled.

4.8 Movement Detection

Movement detection is also performed in user space in
the SHISA stack. At this moment, we are providing

datalink layer
input function

ip6_input()

mtun_input()mip6_tunnel_
input()

ip6_forward()upper layer
input function

original
packet

processing

tunneled
packet

processing

decapsulate

forwarding to
MNP on MR

MN

Figure 6: The input flow of a tunneled packet on an
MN/MR.

datalink layer
input function

ip6_input()

ip6_forward()

proxy input normal input

mip6_encapsulate() mtun_output()

ip6_output()

original
packet

processing

tunneled
packet

processing

encapsulate

forwarding to
MNP of MRto MN/MR

Figure 7: The output flow of a tunneled packet on an
HA.

a simple detection program babymdd as a sample code
for developers of more enhanced detection program.
The babymdd programs detects the node movement
based on the validity of the CoA currently assigned. In
the BSD Operating Systems, all IPv6 addresses have
a special flag called DETACHED that is proposed in
[12]. The flag means that the address is valid but
the router that advertised the prefix of the address is
unreachable. This implies that an MN/MR once re-
ceived prefix information and formed an address from
the prefix, but left the network.

The babymdd program sends a Router Solicitation
message when the status of the network interfaces used
to connect the node to the Internet is changed from
‘down’ to ‘up’. If the node leaves and attaches to a
new network, then the old routers will become un-
reachable by the Neighbor Unreachability Detection

8

struct ip6protosw mip6_tunnel_protosw =

{ SOCK_RAW, &inet6domain, IPPROTO_IPV6, PR_ATOMIC|PR_ADDR,

mip6_tunnel_input, rip6_output, 0, rip6_ctloutput,

rip6_usrreq,

0, 0, 0, 0,

};

Figure 9: The tunneled packet protocol switch entry.

mip6_tunnel_
input() mtun_input()

ip6_input()

ip6_forward()

forwarding from
MNP of MR

from
MN/MR

original
packet

processing

tunneled
packet

processing

decapsulate

Figure 8: The input flow of a tunneled packet on an
HA.

(NUD) mechanism. As a result the corresponding ad-
dresses formed from the prefix advertised by these old
routers will become detached. If the CoA is one of
these detached addresses, the babymdd program will
search other appropriate address and inform the mnd
or mrd program of the new CoA by the MD_INFO Mo-
bility socket message.

5 Discussion

SHISA provides full functional Mobile IPv6 and
NEMO BS implementation. We have conformed its
interoperability with other implementations through
a couple of interoperability test events. However we
still need to develop the SHISA stack in order to sup-
port extensions of Mobile IPv6/NEMO BS, which are
currently discussed in the IETF, and to support more
operating platforms. In this section, we explain some
of these remaining stuffs.

5.1 Multiple Tunnel Mechanisms

As discussed in Section 4.6, the SHISA stack is cur-
rently providing two different tunneling mechanisms
related to mobility function for the same purpose, one
for Mobile IPv6 and the other for NEMO BS. When
a node is acting as an MR, it can also work as an
MN. However the packet tunneled to its HA goes to

W-CDMA

Internet

Wireless
LAN

HA

MN

CN

WLAN
access point

W-CDMA
access point

Bulk
traffic

Reliable
traffic

Figure 10: The usage scenario of multiple network
interfaces simultaneously.

the mtun interface when it is an MR, and goes to the
internal in-kernel tunnel function if it is an MN. This
causes not only the code duplication problem but also
cases functional restrictions.

The IETF MONAMI6 WG is standardizing the
mechanism to utilize multiple network interfaces at
the same time on Mobile IPv6 and NEMO BS. For
example, if a mobile device has a wireless LAN inter-
face and a W-CDMA interface, it might want to utilize
both of them according to the local traffic policy. The
mobile device can use the wireless LAN interface as
a cheap bulk data transfer interface and use the W-
CDMA as a reliable interface (Figure 10). Recently,
as many mobile devices often have multiple commu-
nication interfaces, utilizing them simultaneously is
urgent matter for Mobile IP and NEMO. The Mul-
tiple Care-of Addresses Registration (MCoA) mecha-
nism [13] proposed at the MONAMI6 WG provides a
method to register more than one CoA at the same
time.

The current SHISA implementation supports
MCoA for NEMO BS as described below. The tunnel
mechanism of NEMO BS is implemented as the mtun
interface as discussed in Section 4.3. The current de-

9

sign of the MCoA mechanism in SHISA is to define
the same number of mtun interfaces as the number of
physical network interfaces, and to bind each physical
interface to a mtun interface. The default route of an
MR is set to one of the mtun interfaces (for example,
mtun0) and packet flow is distributed using a packet
filter mechanism, such as IP Filter [14] or PF [15]. If
a wireless LAN interface wi0 is bound to the mtun0
interface, and a W-CDMA interface ppp0 is bound to
the mtun1 interface, then we may use the rules de-
scribed in Figure 11 to distribute traffic. With these
rules, all traffic except the SSH traffic is sent to the
mtun0 interface which is bound to the wireless LAN
interface. This mechanism cannot be used with the
Mobile IPv6 case of the SHISA implementation, be-
cause the mtun interface is not used in Mobile IPv6.

We once tried to solve this problem using the PF
mechanism for Mobile IPv6 too. In the trial, we
stopped using the special in-kernel tunnel mechanism
and passed all the Mobile IPv6 traffic to the mtun in-
terface. It worked with one network interface, however
we noticed that we would have a problem when we use
multiple network interfaces and the RO communica-
tion.

The stack has multiple binding update list or cache
entries when the node registers multiple CoAs to its
HA. When the RO is used, the source address of the
packet (which is one of the CoAs of the MN) must
be decided based on the local flow distribution policy.
That means, we need two policy judgement points for
the essentially same traffic, one in the CoA selection
part, and the other in the packet filtering part.

We are now designing a new tunnel mechanism for
mobility functions. In the idea, the moving node
always outputs packets to a special tunnel interface
bound to the home network of the node (similar to
the mip interface). In the output function, the local
traffic distribution policies are applied to the packets
and they are redirected to the HA with an encapsu-
lating header with a proper CoA of the node based
on the policy. With this procedure, we can put both
the CoA selection task and policy application task in
the same place that will solve the problem described
above. We will verify if this is feasible to implement.

5.2 IPsec Policy Management

As specified in RFC, some of the signaling messages
between an MN and an HA must be protected by
the IPsec mechanism. In these messages, the HoT
and HoTI messages cause IPsec configuration problem
when a node returns to home. These messages must
be protected by the ESP tunnel mechanism while the
node is in a foreign network. In the current implemen-

spdadd HoA ::/0 135 1,0 -P out ipsec

esp/tunnel/HoA-HA/;
spdadd ::/0 HoA 135 3,0 -P in ipsec

esp/tunnel/HA-HoA/;

Figure 12: IPsec policy entries to protect the HoTI
and HoT messages

tation, the node has static IPsec tunnel policy entries
for these messages. Figure 12 is a sample policy defi-
nition for these packets. 135 is the protocol number of
the Mobility Header and 1 and 3 represents the HoTI
and HoT message types respectively.

These tunnels are used only the node is in a foreign
network and must not be used at home. This restric-
tion cases a problem. An MN has to de-register its
binding information registered in CNs when the MN
returns to home. To de-register binding information,
the MN needs to perform the RR procedure that re-
quires HoTI/HoT message exchange. The HoTI mes-
sage sent from the node will match the IPsec policy
statically installed on the MN and may be dropped
at the tunnel end point (the HA). The HoT messages
will come from CNs directly to the MN, because the
MN has already returned to home and the HA is not
proxying its address anymore. The IPsec policy will
discards the incoming HoT message because it is not
protected by the IPsec mechanism as required in the
policy entry.

To solve this problem, the mobility stack must inac-
tivate all the policy related to the HoTI/HoT messages
installed in the kernel. Currently, there is no stan-
dard way to inactivate the policy entries, other than
removing them. Removing policy entries may work if
the node uses IPsec only for Mobile IPv6. However if
other communication frameworks are also using IPsec
policy database, then removing and adding policy en-
tries may influence the policy matching order, that
may result in unexpected IPsec processing. We are
considering a new policy management message to ac-
tivate/inactivate a specific policy entry and planning
to implement and test the mechanism.

5.3 Standard Mobility Interface

We have moved all the signal processing code to user
space. That means, if the kernel supports packet for-
warding mechanisms for Mobile IPv6 and NEMO BS,
then we can use the same signal management pro-
gram on different kernels. We defined a generic mo-
bility information exchange mechanism as the Mobil-
ity Socket for this purpose. The messages used in the
socket is basically platform independent. Thus, if we
can cleanly separate kernel functions and user space

10

pass out route-to mtun0 inet6 from MNP::/64 to any

pass out route-to mtun1 inet6 from MNP::/64 to any port 22

Figure 11: The filter rules to distribute mobile network traffic to multiple NEMO BS tunnels

functions, we can develop the kernel and the signal
processing program independently. SHISA now runs
only on BSD operating systems that support the Mo-
bility Socket and in-kernel mobility functions, however
it can run on other operating systems if they provide
the Mobility Socket interface and equivalent functions
in their kernel.

One obvious missing feature of the current Mobility
Socket implementation is a message filtering mecha-
nism. Currently, all the messages sent by mobility en-
tities are delivered to all the listening sockets regard-
less of its necessity. However, some Mobility Socket
messages are meaningless to some of the mobility en-
tities. For example, the HA module may not want
to receive any messages related to MN/MR functions.
Suppressing unnecessary messages will alleviate the
exhaustion of the socket buffer when there are many
messages.

We once submitted the basic specification (not
including the filtering mechanism) of the Mobility
Socket at the IETF, but more than one year has passed
since the draft expired. We may need to resume the
standardization work when we have gotten clear un-
derstanding of the roles in the kernel and user space
though the development.

5.4 IKE Interaction

At this moment, the SHISA stack works with IPsec
security associations (SAs) manually configured. The
manual operation works only with a small number of
nodes and it is not scalable. The essential solution is
the Internet Key Exchange (IKE) protocol that pro-
vides a dynamic SA generation mechanism. IKE cre-
ates a pair of SA between two nodes, however the
constructed SA is based on the addresses used by the
IKE procedure. This causes a problem in mobility
environment. In the Mobile IPv6 (and NEMO BS)
case, the communication is originated from the HoA
of the MN/MR. Because the HoA cannot be used for
communication, the MN/MR cannot start the IKE
procedure using their HoA.

The solution is to use CoAs for IKE communication
and creates SAs for HoA during the IKE negotiation3.
How to use IKE with Mobile IPv6 is further described
in [16, 17]. Unfortunately, most of the current IKE
programs are not aware of Mobile IPv6. To provide

3The code contributed by Francis Dupont exists waiting to
be merged to the SHISA code.

the dynamic keying feature to our stack and encour-
age mobility technology deployment, we are now work-
ing with the Racoon2 project [18] that is developing
an open source IKE implementation. The interaction
mechanism between a mobility stack and an IKE pro-
gram is proposed in [19]. The proposal defines an
optional data structure to provide CoA and HoA in-
formation to an IKE program of an MN, when it needs
to start the SA negotiation process. We are planning
to join the discussion of the standardization process
of the proposal and to provide the implementation.

5.5 Porting to Other Platforms

The KAME version of the SHISA stack supported
both NetBSD 2.0 and FreeBSD 5.4. Unfortunately
we could not support OpenBSD mainly because lack
of developers using OpenBSD in our team, but it
could be supported potentially. As explained, we are
now focusing on NetBSD-current. Once we have com-
pleted the porting work to NetBSD-current, we will
work on FreeBSD-current. The work will be harder
than the NetBSD work, since the difference of the ker-
nel code between FreeBSD 5.4 and FreeBSD-current
is bigger than that of NetBSD. In addition, recent
FreeBSD introduced the fine-grained locking mecha-
nism for better performance in a multi-processor envi-
ronment. The IPv6 code and mobility related code in
the kernel does not have support for the fine-grained
locking mechanism. The adaptation will need some
additional development and more test to stabilize.
The OpenBSD port is planned after the FreeBSD port.

It is possible to port SHISA to other platforms than
BSDs if they support kernel modifications as described
in Section 5.3. In fact, there is a port to the Darwin
operating system as announced in the Darwin IPv6
developers mailing list.

6 Conclusion

We developed the Mobile IPv6 and NEMO BS proto-
col stack on the KAME platform. We are now porting
it to the latest BSD distributions. We have started to
port it to NetBSD as the first step and will try to work
on other platforms based on the progress of the current
work. The stack provides most of the specified fea-
tures. It is confirmed interoperable with many other
independently developed Mobile IPv6 and NEMO BS
stacks, and it works stably. We are now focusing to

11

refine the code, especially the kernel code, to make
the quality high enough to be merged to the NetBSD
main tree.

Although we have completed the implementation of
the basic mobility functions, we still have many things
to do to support advanced mobility features under
standardization in the IETF. We continue to work on
supporting these advanced functions to provide more
useful mobility stack to various BSD operating sys-
tems.

Acknowledgement

The authors would like to thank the WIDE Project
for the support on our development activity.

References

[1] David B. Johnson, Charles E. Perkins, and Jari
Arkko. Mobility Support in IPv6. Technical Re-
port RFC3775, IETF, June 2004.

[2] Vijay Devarapalli, Ryuji Wakikawa, Alexandru
Petrescu, and Pascal Thubert. Network Mobil-
ity (NEMO) Basic Support Protocol. Technical
Report RFC3963, IETF, January 2005.

[3] WIDE project. SHISA, February 2007.
http://www.mobileip.jp/.

[4] Keiichi Shima, Ryuji Wakikawa, Koshiro Mit-
suya, Tsuyoshi Momose, and Keisuke Uehara.
SHISA: The IPv6 Mobility Framework for BSD
Operating Systems. In IPv6 Today – Tech-
nology and Deployment (IPv6TD’06). Interna-
tional Academy Research and Industry Associ-
ation, IEEE Computer Society, August 2006.

[5] WIDE project. KAME Working Group, March
2006. http://www.kame.net/.

[6] Koshiro Mitsuya. ATLANTIS: NEMO Ba-
sic Support Implementation, January 2005.
http://www.nautilus6.org/implementation/
atlantis.html.

[7] Ryuji Wakikawa, Susumu Koshiba, Keisuke Ue-
hara, and Jun Murai. Multiple Network Inter-
faces Support by Policy-Based Routing on Mo-
bile IPv6. In 2002 International Conference on
Wireless Networks (ICWN’02), July 2002.

[8] Tsuyoshi Momose, Keiichi Shima, and Anti
Tuominen. The application interface to exchange
mobility information with Mobility subsystem
(Mobility Socket, AF MOBILITY). Technical

Report draft-momose-mip6-mipsock-00, IETF,
June 2005.

[9] Tatuya Jinmei, Kazuhiko Yamamoto, Jun-ichiro
Hagino, Shoichi Sakane, Hiroshi Esaki, and Jun
Murai. The IPv6 Software Platform for BSD.
IEICE Transactions on Communications, E86-
B(2):464–471, February 2003.

[10] Keith Sklower. A Tree-based Packet Routing Ta-
ble for Berkeley UNIX. In Proceedings of the
Winter 1991 USENIX Conference, pages 93–103.
USENIX Association, January 1991.

[11] Samita Chakrabarti and Erik Nordmark. Exten-
sion to Socket API for Mobile IPv6. Technical
Report RFC4584, IETF, July 2006.

[12] Tatuya Jinmei, Jun-ichiro Ito, and Munechika
Sumikawa. Efficient Use of IPv6 Auto-
Configuration in a Mobile Environment. In The
7th Research Reporting Session. Information Pro-
cessing Society of Japan, SIG Mobile Computing,
December 1998.

[13] Ryuji Wakikawa, Thierry Ernst, and Kenichi
Nagami. Multiple Care-of Addresses Registra-
tion. Technical Report draft-wakikawa-mobileip-
multiplecoa-05, IETF, February 2006.

[14] Darren Reed. IP Filter. Web page, February
2007. http://coombs.anu.edu.au/˜avalon/.

[15] Daniel Hartmeier. Design and Performance
of the OpenBSD Stateful Packet Filter (pf).
In USENIX 2002 Annual Technical Conference,
pages 171–180, June 2002.

[16] Jari Arkko, Vijay Devarapalli, and Francis
Dupont. Using IPsec to Protect Mobile IPv6 Sig-
naling Between Mobile Nodes and Home Agents.
Technical Report RFC3776, IETF, June 2004.

[17] Vijay Devarapalli and Francis Dupont. Mobile
IPv6 Operation with IKEv2 and the revised IPsec
Architecture. Technical Report draft-ietf-mip6-
ikev2-ipsec-07, IETF, October 2006.

[18] WIDE project. The Racoon2 Project, February
2007. http://www.racoon2.wide.ad.jp/.

[19] Shinta Sugimoto, Francis Dupont, and Masahide
Nakamura. PF KEY Extension as an Interface
between Mobile IPv6 and IPsec/IKE. Tech-
nical Report draft-sugimoto-mip6-pfkey-migrate-
03, IETF, September 2006.

12

