
Reflections on Building a High-performance Computing Cluster
Using FreeBSD

Brooks Davis, Michael AuYeung, J. Matt Clark, Craig Lee, James Palko, Mark Thomas
The Aerospace Corporation

El Segundo, CA
{brooks,mauyeung,mclark,lee,jpalko,mathomas}@aero.org

Abstract

Since late 2000 we have developed and maintained
a general purpose technical and scientific computing
cluster running the FreeBSD operating system. In
that time we have grown from a cluster of 8 dual In-
tel Pentium III systems to our current mix of 64 dual
Intel Xeon and 289 dual AMD Opteron systems. This
paper looks back on the system architecture as docu-
mented in our BSDCon 2003 paper “Building a High-
performance Computing Cluster Using FreeBSD” and
our changes since that time. After a brief overview
of the current cluster we revisit the architectural de-
cisions in that paper and reflect on their long term
success. We then discuss lessons learned in the pro-
cess. Finally, we conclude with thoughts on future
cluster expansion and designs.

1 Introduction

From the early 1990’s on, the primary thrust of high
performance computing (HPC) development has been
in the direction of commodity clusters, commonly re-
ferred to as Beowulf clusters [Becker]. These clusters
combine commercial off-the-shelf hardware to create
systems which rival or exceed the performance of tra-
ditional supercomputers in many applications while
costing as much as a factor of ten less. Not all applica-
tions are suitable for clusters, but a signification por-
tion of interesting scientific applications can be suc-
cessfully adapted to them.

In 2001, driven by a number of separate users with
supercomputing needs, The Aerospace Corporation (a
California nonprofit corporation that operates a Fed-
erally Funded Research and Development Center) de-
cided to build a corporate computing cluster (even-
tually named Fellowship for The Fellowship of the

c©2007 The Aerospace Corporation.

Ring [Tolkien]) as an alternative to continuing to buy
small clusters and SMP systems on an ad-hoc basis.
This decision was motivated by a desire to use com-
puting resources more efficiently as well as reducing
administrative costs. The diverse set of user require-
ments in our environment led us to a design which dif-
fers significantly from most clusters we have seen else-
where. This is especially true in the areas of operating
system choice (FreeBSD) and configuration manage-
ment (fully network booted nodes).

At BSDCon 2003 we presented a paper titled “Build-
ing a High-performance Computing Cluster Using
FreeBSD” [Davis] detailing these design decisions.
This paper looks back on the system architecture as
documented in that paper and our changes since that
time. After a brief overview of the current cluster
we revisit the architectural decisions in that paper
and reflect on their long term success. We then dis-
cuss lessons learned in the process. Finally, we con-
clude with thoughts on future cluster expansion and
designs.

2 Fellowship Overview

The basic logical and physical layout of Fellowship
is similar to many clusters. There are six core sys-
tems, 352 dual-processor nodes, a network switch, and
assorted remote management hardware. All nodes
and servers run FreeBSD, currently 6.2-RELEASE.
The core systems and remote management hardware
sit on the Aerospace corporate network. The nodes
and core systems share a private, non-routed network
(10.5/16). The majority of this equipment is mounted
in two rows of seven-foot tall, two-post racks residing
in the underground data center at Aerospace head-
quarters in El Segundo, California. Figure 1 shows
Fellowship in Fall 2006. The layout of a recent node
racks is shown in Figure 2. The individual racks vary
due to design changes over time.

When users connect to Fellowship, they do so via a

Figure 1: Fellowship Circa February 2007

core server named fellowship that is equipped to
provide shell access. There they edit and compile their
programs and submit jobs for execution on a node or
set of nodes. The scheduler is run on the core server
arwen that also provides network boot services to the
nodes to centralize node management. Other core
servers include: frodo which provides directory ser-
vice for user accounts and hosts the license servers for
commercial software including the Intel FORTRAN
compiler and Grid Mathematica; gamgee which pro-
vides backups using the Bacula software and a 21
tape LTO2 changer; elrond and legolas which host
shared temporary file storage that is fast and large
respectively; and moria, our Network Appliance file
server.

The nodes are currently a mix of older Intel Xeons
and single and dual-core AMD Opterons. Table 1
gives a breakdown of general CPU types in Fellow-
ship today. Figure 4 and Figure 5 show the composi-
tion of Fellowship over time by node and core count.
Each node as an internal ATA or SATA disk that is
either 80GB or 250GB and between 1 and 4 giga-
bytes of RAM. The nodes are connected via Gigabit
Ethernet through a Cisco Catalyst 6509 switch1 The

1This was originally a Catalyst 6513, but most slots in the
6513 have reduced available bandwidth so we upgraded to the

CPU Type Nodes CPUs Cores
Xeon 64 128 128
Opteron single-core 136 272 272
Opteron dual-core 152 304 608
Total 352 704 1008

Table 1: CPUs in Fellowship nodes.

Opterons are mounted in custom 1U chassis approxi-
mately 18 inches deep with IO ports and disks facing
the front of the rack. Figure 3 shows the front of first
generation Opteron nodes.

Although the nodes have disks, we network boot them
using PXE support on their network interfaces with
frodo providing DHCP, TFTP, NFS root disk, and
NIS user accounts. On boot, the disks are automat-
ically checked to verify that they are properly par-
titioned for our environment. If they are not, they
are automatically repartitioned. This means minimal
configuration of nodes is required beyond determining
their MAC address and location. Most of that config-
uration is accomplished by scripts.

Local and remote control of core machines is made

smaller 6509.

Unit Contents
45 Patch panel
44 (Connection to patch panel rack)
43 empty
42 empty
41 empty
40 node (r01n32: 10.5.1.32)
39 node (r01n31: 10.5.1.31)
38 node (r01n30: 10.5.1.30)
37 node (r01n29: 10.5.1.29)
36 node (r01n28: 10.5.1.28)
35 node (r01n27: 10.5.1.27)
34 node (r01n26: 10.5.1.26)
33 node (r01n25: 10.5.1.25)
32 Cyclades 10-port power controller
31 Cyclades 10-port power controller
30 node (r01n24: 10.5.1.24)
29 node (r01n23: 10.5.1.23)
28 node (r01n22: 10.5.1.22)
27 node (r01n21: 10.5.1.21)
26 node (r01n20: 10.5.1.20)
25 node (r01n19: 10.5.1.19)
24 node (r01n18: 10.5.1.18)
23 node (r01n17: 10.5.1.17)
22 rackmount KVM unit
21 node (r01n16: 10.5.1.16)
20 node (r01n15: 10.5.1.15)
19 node (r01n14: 10.5.1.14)
18 node (r01n13: 10.5.1.13)
17 node (r01n12: 10.5.1.12)
16 node (r01n11: 10.5.1.11)
15 node (r01n10: 10.5.1.10)
14 node (r01n09: 10.5.1.9)
13 Cyclades PM 10-port power controller
12 Cyclades PM 10-port power controller
11 node (r01n08: 10.5.1.8)
10 node (r01n07: 10.5.1.7)
9 node (r01n06: 10.5.1.6)
8 node (r01n05: 10.5.1.5)
7 node (r01n04: 10.5.1.4)
6 node (r01n03: 10.5.1.3)
5 node (r01n02: 10.5.1.2)
4 node (r01n01: 10.5.1.1)
3
2 4 120V 30A & 1 120 V 20A Circuits
1

Figure 2: Layout of Node Rack 1

possible through a Lantronix networked KVM-switch
connected to a 1U rackmount keyboard, and track
pad and an 18-inch rackmount monitor which dou-
bles as a local status display. In the newer racks, 1U
rack mount keyboard, monitor, mouse (KVM) units
are installed to allow administrators to easily access
local consoles during maintenance. In addition to
console access, everything except the terminal servers
and the switch are connected to serial remote power
controllers. The older racks use a variety of 8-port
BayTech power controllers and the new ones use 10-
port Cyclades AlterPath PM series controllers. All

Figure 3: Front details of Opteron nodes

Figure 4: Fellowship node count and type over time

Figure 5: Fellowship core count and type over time

of these controllers are capable of supplying a total
of 30 Amps of power at 120 Volts. This allows us to
remotely reboot virtually any part of the system by
connecting to the power controller via the appropri-
ate terminal server.

On top of this infrastructure, access to nodes is con-
trolled by Sun Grid Engine (SGE), a scheduler im-
plementing a superset of the POSIX Batch Environ-
ment Services specification. SGE allows users to sub-
mit both interactive and batch job scripts to be run
on one or more processors. Users are free to use the
processors they are allocated in any reasonable man-
ner. They can run multiple unrelated processes or
massively parallel jobs.

To facilitate use of Fellowship, we provide a basic Unix
programming environment, plus the parallel program-
ming toolkits, and commercial parallel applications.
For parallel programming toolkits we provide MPICH,
MPICH2, and OpenMPI implementations of the Mes-
sage Passing Interface [MPI] (MPI) as well as the Par-
allel Virtual Machine (PVM). We also provide Grid
Mathematica and MATLAB under Linux emulation.

3 Design Issues

One of the biggest challenges in building Fellowship
was our diverse user base. Among the users at the
initial meetings to discuss cluster architecture, we had
users with loosely coupled and tightly coupled appli-
cations, data intensive and non-data intensive appli-
cations, and users doing work ranging from daily pro-
duction runs to high performance computing research.
This diversity of users and applications led to the com-
promise that was our initial design. Many aspects of
this design remain the same, but some have changed
based on our experiences. In this section we highlight
the major design decisions we made while building Fel-
lowship and discuss how those decisions have fared in
the face of reality.

3.1 Operating System

The first major design decision any cluster designer
faces is usually the choice of operating system. By
far, the most popular choice is a Linux distribution of
some sort. Indeed, Linux occupies much the same
position in the HPC community as Windows does
in the desktop market to the point most people as-
sume that, if it is a cluster, it runs Linux. In real-
ity a cluster can run almost any operating system.
Clusters exist running Solaris [SciClone], MacOS X,

FreeBSD, and Windows[WindowsCCS] among others.
NASA’s Columbia [Columba] super computer is actu-
ally a cluster of 24 SGI Altix systems 21 of which are
512-CPU system.

For an organization with no operating system bias
and straight-forward computing requirements, run-
ning Linux is the path of least resistance due to free
clustering tool kits such as Rocks [ROCKS] or OS-
CAR [OSCAR]. In other situations, operating system
choice is more complicated. Important factors to con-
sider include chosen hardware platform, existence of
experienced local system administration staff, avail-
ability of needed applications, ease of maintenance,
system performance, and the importance of the abil-
ity to modify the operating system.

For a variety of reasons, we chose FreeBSD for Fellow-
ship. The most pragmatic reason for doing so is the
excellent out of the box support for diskless systems
which was easily modifiable to support our nodes net-
work booting model. This has worked out very well.

Additionally, the chief Fellowship architect uses
FreeBSD almost exclusively and is a FreeBSD com-
mitter. This meant we had more FreeBSD experience
than Linux experience and that we could push some of
our more general changes back into FreeBSD to sim-
plify operating system upgrades. We have been able
to feed back a number of small improvements, par-
ticularly in the diskless boot process which has bene-
fited us and other FreeBSD users. For changes which
are too Aerospace- or Fellowship-specific to contribute
back, we have maintained an internal Perforce repos-
itory with a customized version of FreeBSD.

The ports collection was also a major advantage of us-
ing FreeBSD. It has allowed us to install and maintain
user-requested software quickly and easily. For most
applications the ports collection has worked well. The
major exception is anything related to MPI. MPI im-
plementations are generally API compatible, but use
different symbols, libraries, and header files. As a re-
sult MPI implementations traditionally provide a set
of wrapper scripts for the compiler along the lines of
mpicc, mpic++, mpif77, etc which take care of the de-
tails of linking. Unfortunately a different compilation
of MPI is needed for each compiler and it is useful to
have multiple MPI versions. The ports framework is
not equipped to deal with such combinatorial explo-
sions.

The availability of Linux emulation meant we did not
give up much in the way of application compatibility.
We were the launch customer for Grid Mathematica
using the Linux version. We have also run other third-
party Linux programs including MPI applications.

Initially the disadvantages of FreeBSD for our pur-
poses were immature SMP and threading support, and
an widely held view within the high performance com-
puting community that if it isn’t a commercial super-
computer, it must be a Linux system. SMP support
was not a major issue for our users because most of
our jobs are compute-bound so the poor SMP perfor-
mance under heavy IO was a moot problem. With the
5.x and 6.x series of FreeBSD releases, this issue has
largely been resolved. Threading was more of an issue.
We had users who wanted to use threads to support
SMP scaling in certain applications and with the old
user space threading provided by libc r they could
not do that. With our migration to the FreeBSD 6.x
series, this problem has been resolved.

The Linux focus of the HPC community has caused
us some problems. In particular, many pieces of soft-
ware either lack a FreeBSD port, or only have a poorly
tested one which does not actually work out of the
box. In general we have been able to complete ports
for FreeBSD without issue. One significant exception
was the LAM implementation of MPI. In 4.x it worked
fine, but in 5.x and 6.x it builds but crashes instead
of running. We have been unable to find and fix the
problems. Initially there was a shortage of compiler
support for modern versions of FORTRAN. This has
been changed by two things: the gfortran project’s
FORTRAN 90 and 95 compiler and the wrapping of
the Intel Linux FORTRAN compiler to build FreeBSD
software. A FreeBSD FORTRAN compiler is also
available from NAG. One other issue is the lack of
a parallel debugger such as TotalView.

We are happy with the results of running FreeBSD
on the cluster. It has worked well in for us and the
occasional lack of software had been more than made
up for by our existing experience with FreeBSD.

3.2 Hardware Architecture

The choice of hardware architecture is generally made
in conjunction with the operating system as the two
interact with each other. Today, most clusters are
based on Intel or AMD x86 CPUs, but other choices
are available. When developing Fellowship, SPARC
and Alpha clusters were fairly command as were Ap-
ple XServe clusters based on the PowerPC platform.
Today, the Alpha is essentially gone and Apple has
migrated from PowerPC to Intel CPUs leaving x86
with the vast majority of the HPC cluster market.
The major issues to consider are price, performance,
power consumption, and operating system compatibil-
ity. For instance, Intel’s Itanium2 has excellent float-
ing point performance, but is expensive and power
hungry. Early on it also suffered form immature oper-

ating system support. In general, x86 based systems
are the path of least resistance given the lack of a
conflicting operating system requirement.

When we were selecting a hardware architecture in
2001, the major contenders were Alpha and Intel or
AMD based x86 systems. We quickly discarded Al-
pha from consideration because of previous experi-
ences with overheating problems on a small Aerospace
Alpha cluster. Alphas also no longer had the kind of
performance lead they enjoyed in the late 1990’s. We
looked at both Pentium III and Athlon-based systems,
but decided that while the performance characteristics
and prices did not vary significantly, power consump-
tion was too problematic on the Athlon systems.

Over the life of Fellowship, we have investigated other
types of nodes including Athlon based systems, the
Xeon systems we purchased for the 2003 expansion,
AMD Opteron systems, and Intel Woodcrest systems.
Athlons failed to match the power/performance ra-
tios of Intel Pentium III systems, but with the Xeon
and Opteron processors the balance shifted resulting
in purchases of Opterons in 2004 through 2006. We
are now evaluating both AMD and Intel based solu-
tions for future purchase. One interesting thing we’ve
found is that while the Intel CPUs themselves con-
sume less power, the RAM and chipsets they use are
substantially more power hungry. This illustrates the
need to look a all aspects of the system not just the
CPUs.

3.3 Node Architecture

Most of the decisions about node hardware will derive
from the selection of hardware architecture, cluster
form factor, and network interface. The biggest of the
remaining choices is single or multi-processor systems.
Single processor systems have better CPU utilization
due to a lack of contention for RAM, disk, and network
access. Multi-processor systems can allow hybrid ap-
plications to share data directly, decreasing their com-
munication overhead. Additionally, multi-processor
systems tend to have higher performance interfaces
and internal buses then single processor systems. This
was significant consideration with Fellowship’s initial
design, but the current direction of processor develop-
ment suggest that only multiple core CPUs will exist
in the near future.

Other choices are processor speed, RAM, and disk
space. We have found that aiming for the knee of
the price curve has served us well, since no single user
dominates our decisions. In other environments, top
of the line processors, large disks, or large amounts of
RAM may be justified despite the exponential increase

CPU 2 x Pentium III 1GHz
Network Interface 3Com 3C996B-T
RAM 1GB
Disk 40GB 7200RPM IDE

Table 2: Configuration of first Fellowship nodes.

CPU 2 x Opteron 275 2x2.2GHz
Network Interface On board gigabit
RAM 4GB
Disk 250GB 7200RPM SATA

Table 3: Configuration of latest Fellowship nodes.

in cost.

For Fellowship, we chose dual CPU systems. We were
motivated by a desire to do research on code that
takes advantage of SMP systems in a cluster, higher
density than single processor systems, and the fact
that the 64-bit PCI slots we needed for Gigabit Eth-
ernet were not available on single CPU systems. As
a result of our focus on the knee of the price curve,
we have bought slightly below the performance peak
on processor speed, with 2-4 sticks of smaller-than-
maximum RAM, and disks in the same size range as
mid-range desktops. This resulted in the initial con-
figuration shown in Table 2. The most recent node
configuration is shown in Table 3.

3.4 Network Interconnects

Like hardware architecture, the selection of network
interfaces is a matter of choosing the appropriate point
in the trade space between price and performance.
Performance is generally characterized by bandwidth
and latency. The right interface for a given cluster de-
pends significantly on the jobs it will run. For loosely-
coupled jobs with small input and output data sets,
little bandwidth is required and 100Mbps Ethernet is
the obvious choice. For other, tightly-coupled jobs, In-
finiBand or 10 Gbps Myrinet which have low latency
and high bandwidth are good options For some appli-
cations 1 Gbps or 10 Gbps Ethernet will be the right
choice.

The choice of Gigabit Ethernet for Fellowship’s inter-
connect represents a compromise between the cheaper
100 Mbps Ethernet our loosely coupled applications
would prefer (allowing us to buy more nodes) and
2Gbps Myrinet. When we started building Fellow-
ship, Gigabit Ethernet was about one-third of the cost
of each node whereas Myrinet would have more than
doubled our costs. Today Gigabit Ethernet is stan-
dard on the motherboard and with the large switches

required by a cluster Fellowship’s size, there is no price
difference between 100 Mbps and 1 Gbps ether ports.

Gigabit Ethernet has worked well for most of our ap-
plications. Even our computational fluid dynamics
(CFD) applications have run reasonably well on the
system. A few applications such as the CFD codes
and some radiation damage codes would benefit from
higher bandwidth and lower latency, but Gigabit Eth-
ernet appears to have been the right choice at the
time.

3.5 Core Servers and Services

On Fellowship, we refer to all the equipment other
then the nodes and the remote administration hard-
ware as core servers. On many clusters, a single core
server suffices to provide all necessary core services.
In fact, some clusters simply pick a node to be the
nominal head of the cluster. Some large clusters pro-
vide multiple front ends, with load balancing and fail
over support to improve up time.

Core services are those services which need to be avail-
able for users to utilize the cluster. At a minimum,
users need accounts and home directories. They also
need a way to configure their jobs and get them to the
nodes. The usual way to provide these services is to
provide shared home and application directories, usu-
ally via NFS and use a directory service such as NIS
to distribute account information. Other core services
a cluster architect might choose to include are batch
schedulers, databases for results storage, and access
to archival storage resources. The number of ways
to allocate core servers to core services is practically
unlimited.

Fellowship started with three core servers: the data
server, the user server, and the management server.
All of these servers are were dual 1GHz Pentium
III systems with SCSI RAID5 arrays. The data
server, gamgee, served a 250GB shared scratch vol-
ume via NFS, and performed nightly backups to a 20
tape LTO library using AMANDA. The user server,
fellowship, served NFS home directories and gave
the users a place to log in to compile and run ap-
plications. The management server, frodo, ran the
scheduler, NIS, and our shared application hierarchy
mounted at /usr/aero. Additionally, the manage-
ment server uses DHCP, TFTP, and NFS to netboot
the nodes.

Today, Fellowship has eight core servers. The data
server has been split into three machines: elrond,
gamgee, and legolas. elrond is a 2.4GHz dual Xeon
with SCSI raid that provides /scratch. gamgee it

self has been replaced with a dual Opteron with 1TB
of SATA disk. It runs backups using Bacula a net-
work based backup program. legolas provides 2.8GB
of shared NFS disk at /bigdisk. The user server,
fellowship, is now a quad Opteron system and home
directories are served by moria, a Network Appliance
FAS250 filer. It is supplemented by a second quad
Opteron, fellowship-64 which runs FreeBSD amd64.
The original management servers, frodo, still exists,
but currently only runs NIS. It has mostly been re-
placed by arwen which has taken over running the
Sun Grid Engine scheduler and netbooting the nodes.

These services were initially isolated from each other
for performance reasons. The idea was that hitting the
shared scratch space would not slow down ordinary
compiles and compiling would not slow down scratch
space access. We discovered that, separation of ser-
vices does work, but it comes at the cost of increased
fragility because the systems are interdependent, and
when one fails, they all have problems. We have de-
vised solutions to these problems, but this sort of divi-
sion of services should be carefully planned and would
generally benefit from redundancy when feasible. Our
current set of servers is larger than optimal from an
administrative perspective. This situation arose be-
cause new core servers were purchased opportunisti-
cally when end of year funds were available and thus
older servers have not been gracefully retired.

3.6 Node Configuration Management

Since nodes outnumber everything else on the sys-
tem, efficient configuration management is essential.
Many systems install an operating system on each
node and configure the node-specific portion of the
installation manually. Other systems network boot
the nodes using Etherboot, PXE or LinuxBIOS. The
key is good use of centralization and automation. We
have seen many clusters where the nodes are never up-
dated without dire need because the architect made
poor choices that made upgrading nodes impractical.

Node configuration management is probably the
most unique part of Fellowship’s architecture. We
start with the basic FreeBSD diskless boot pro-
cess [diskless(8)]. We then use the diskless remount
support to mount /etc as /conf/base/etc. For many
applications, this configuration would be sufficient.
However, we have applications which require signifi-
cant amounts of local scratch space. To deal with this
each node contains a disk. The usual way of handling
such disks would be to manually create appropriate
directory structures on the disk when the system was
first installed and then let the nodes mount and fsck
the disks each time they were booted. We deemed

this impractical because nodes are usually installed in
large groups. Additionally, we wanted the ability to
reconfigure the disk along with the operating system.

In our original FreeBSD 4.x based installation, we cre-
ated a program (diskmark) which used an invalid en-
try in the MBR partition table to store a magic num-
ber and version representing the current partitioning
scheme. At boot we used a script which executed be-
fore the body of rc.diskless2 to examine this entry
to see if the current layout of the disk was the required
one. If it was not, the diskless scripts automatically
use Warner Losh’s diskprep script to initialize the
disk according to our requirements. With FreeBSD
6.x we adopted a somewhat less invasive approach.
We still use a version of diskprep to format the disk,
but now we use glabel volume labels to identify the
version of the disk layout. The script that performs
the partitioning is installed in /etc/rc.d instead of re-
quiring modification of /etc/rc. We install the script
in the node image using a port.

With this configuration, adding nodes is very easy.
The basic procedure is to bolt them into the rack, hook
them up, and turn them on. We then obtain their
MAC address from the switch’s management console
and add it to the DHCP configuration so each node
is assigned a well-known IP address. After running a
script to tell the scheduler and Nagios about the nodes
and rebooting them, they are ready for use.

Under FreeBSD 4.x, maintenance of the netboot im-
age is handed by chrooting to the root of the installa-
tion and following standard procedures to upgrade the
operating system and ports as needed. With our move
to FreeBSD 6.x we have also moved to a new model
of netboot image updating. Instead of upgrading a
copy, we create a whole new image from scratch using
parts of the nanobsd [Gerzo] framework. The motiva-
tion for switching to this mode was that in the four
years since we got the initial image working we had
forgotten all the customizations that were required to
make it fully functional. Since 6.x has an large num-
ber of differences in configuration from 4.x, this made
it difficult to upgrade. Our theory with creating new
images each time is that it will force us to document
all the customizations either in the script or in a sep-
arate document that will be manually modified. Thus
far, this has worked to some degree, but has not been
perfect as creation of some of the images has been
rushed resulting in a failure to document everything.
In the long term, we expect it to be a better solu-
tion than in place upgrades. Software which is not
available from the ports collection is installed in the
separate /usr/aero hierarchy.

One problem we found with early systems was poor

Mountpoint Source
/ arwen:/export/roots/freebsd/fbsd62
/etc /dev/md0
/tmp /dev/ufs/tmp
/var /dev/ufs/var
/home moria:/home
/usr/aero frodo:/nodedata/usr.aero
/usr/local/sge/fellowship arwen:/export/sge/fellowship
/scratch elrond:/scratch
/bigdisk legolas:/bigdisk

Table 4: Sample node (r01n01 aka 10.5.1.1) mount structure

quality PXE implementations. We have found PXE to
be somewhat unreliable on nearly all platforms, par-
ticularly on the Pentium III systems, occasionally fail-
ing to boot from the network for no apparent reason
and then falling back to the disk which is not config-
ured to boot. Some of these problems appear to be
caused by interactions with network switches and the
spanning tree algorithm. To work around this prob-
lem we have created a diskprep configuration that
creates an extra partition containing FreeDOS and
an AUTOEXEC.BAT that automatically reboots the ma-
chine if PXE fails rather than hanging. It would be
better if server motherboard vendors added an option
to the BIOS to keep trying in the event of a PXE
failure.

3.7 Job Scheduling

Job scheduling is potentially one of the most com-
plex and contentious issues faced by a cluster archi-
tect. The major scheduling options are running with-
out any scheduling, manual scheduling, batch queuing,
and domain specific scheduling.

In small environments with users who have compatible
goals, not having a scheduler and just letting users run
what they want when they want or communicating
with each other out of band to reserve resources as
necessary can be a good solution. It has very little
administrative overhead, and in many cases, it just
works.

With large clusters, some form of scheduling is usually
required. Even if users do not have conflicting goals,
it’s difficult to try to figure out which nodes to run
on when there are tens or hundreds available. Ad-
ditionally, many clusters have multiple purposes that
must be balanced. In many environments, a batch
queuing system is the answer. A number exist, in-
cluding OpenPBS, PBSPro, Sun Grid Engine (SGE),
LSF, Torque, NQS, and DQS. Torque and SGE are
freely available open source applications and are the

most popular options for cluster scheduling. When we
started building Fellowship OpenPBS was quite pop-
ular and SGE was not yet open source.

For some applications, batch queuing is not a good
solution. This is usually either because the applica-
tion requires too many jobs for most batch queuing
systems to keep up, or because the run time of jobs is
too variable to be useful. For instance, we have heard
of one computational biology application which runs
through tens of thousands of test cases a day where
most take a few seconds, but some may take minutes,
hours, or days to complete. In these situations, a do-
main specific scheduler is often necessary. A common
solution is to store cases in a database and have ap-
plications on each node that query the database for a
work unit, process it, store the result in the database,
and repeat.

On Fellowship, we have a wide mix of applications
ranging from trivially schedulable tasks to applica-
tions with unknown run times. Our current strat-
egy is to implement batch queuing with a long-term
goal of discovering a way to handle very long run-
ning applications. We initially intended to run the
popular OpenPBS scheduler because it already had a
port to FreeBSD and it is open source. Unfortunately,
we found that OpenPBS had major stability problems
under FreeBSD (and, by many accounts, most other
operating systems)2. About the time we were ready
to give up on OpenPBS, Sun released SGE as open
source. FreeBSD was not supported initially, but we
were able to successfully complete a port based on
some patches posted to the mailing lists. That initial
port allowed jobs to run. Since then we have added
more functionality and the FreeBSD port is essentially
at feature parity with the Linux port.

The major problem we had with scheduling is that ini-
tially, we allowed direct access to cluster nodes with-
out the scheduler. While we had few users and not

2The Torque resource manager is a successful fork of
OpenPBS to support the Maui scheduler

all systems were full at all times, this was not a big
deal. Unfortunately, as the system filled up, it be-
came a problem. We had assumed that users would
see the benefits of using the scheduler such as unat-
tended operation and allocation of uncontested re-
sources, but most did not. Worse, those few who did
often found themselves unable to access any resources
because the scheduler saw that all the nodes were over-
loaded. Those users then gave up on the scheduler.
We eventually imposed mandatory use of the sched-
uler along with a gradual transition to FreeBSD 6.x
on the nodes. There was a fair bit of user rebellion
when this happened, but we were able to force them
to cooperate eventually. In retrospect failure to man-
date use of the scheduler as soon as it was operational
was a significant error.

3.8 Security Considerations

For most clusters, we feel that treating the cluster as
a single system is the most practical approach to se-
curity. Thus for nodes which are not routed to the In-
ternet like those on Fellowship, all exploits on nodes
should be considered local. What this means to a
given cluster’s security policy is a local issue. For
systems with routed nodes, management gets more
complicated, since each node becomes a source of po-
tential remote vulnerability. In this case it may be
necessary to take action to protect successful attacks
on nodes from being leveraged into full system access.
In such situations, encouraging the use of encrypted
protocols within the cluster may be desirable, but the
performance impact should be kept firmly in mind.

The major exception to this situation is clusters where
jobs have access to data that must not be mingled.
We have begun an investigation into ways to isolate
jobs from each other more effectively. We believe that
doing so will yield both improved security and better
performance predictability.

For the most part we have chosen to concentrate on
protecting Fellowship from the network at large. This
primarily consists of keeping the core systems up to
date and requiring that all communications be via
encrypted protocols such as SSH and HTTPS. Inter-
nally we discourage direct connections between nodes
except by scheduler-provided mechanisms that could
easily be encrypted. Inter-node communications are
unencrypted for performance reasons.

3.9 System Monitoring

The smooth operation of a cluster can be aided by
proper use of system monitoring tools. Most common
monitoring tools such as Nagios and Big Sister are
applicable to cluster use. The one kind of monitoring
tool that does not work well with clusters is the sort
that sends regular e-mail reports for each node. Even
a few nodes will generate more reports then most ad-
mins have time to read. In addition to standard mon-
itoring tools, there exist cluster specific tools such as
the Ganglia Cluster Monitor. Most schedulers also
contain monitoring functionality.

On Fellowship we are currently running the Ganglia
Cluster Monitoring system, Nagios, and the standard
FreeBSD periodic scripts on core systems. Ganglia
was ported to FreeBSD previously, but we have cre-
ated FreeBSD ports which make it easier to install
and make its installation more BSD-like. We have
also rewritten most of the FreeBSD specific code so
that it is effectively at feature parity with Linux (and
better in some cases). A major advantage of Ganglia
is that no configuration is required to add nodes. They
are automatically discovered via multicast. We have
also deployed Nagios with a number of standard and
custom scripts. With Nagios notification we typically
see problems with nodes before our users do.

3.10 Physical System Management

At some point in time, every system administrator
finds that they need to access the console of a machine
or power cycle it. With just a few machines, installing
monitors on each machine or installing a KVM switch
for all machines and flipping power switches manually
is a reasonable option. For a large cluster such as Fel-
lowship, more sophisticated remote management sys-
tems are desirable.

In Fellowship’s architecture, we place a strong empha-
sis on remote management. The cluster is housed in
our controlled access data center, which makes physi-
cal access cumbersome. Additionally, the chief archi-
tect and administrator lives around 1500 miles (about
2400 kilometers) from the data center, making direct
access even more difficult. As a result, we have in-
stalled remote power controllers on all nodes are core
systems and remote KVM access to all core systems.
Initially we had also configured all nodes to have se-
rial consoles accessible through terminal servers. This
worked well for FreeBSD, but we had problems with
hangs in the BIOS redirection on the Pentium III sys-
tems which forced us to disable it. That combined
with the fact that we rarely used the feature and the

$100 per port cost lead us to discontinue the purchase
of per-rack terminal servers when we built the sec-
ond row of racks. One recent change we have made is
adding a per-rack 1U KVM unit in newer node racks.
At around $650/rack they are quite cost effective and
should save significant administrator time when diag-
nosing failures.

In the future we would like to look at using IPMI to
provide remote console and reboot for nodes eliminat-
ing the need for dedicated hardware.

3.11 Form Factor

The choice of system form factor is generally a choice
between desktop systems on shelves, rack mounted
servers, and blade systems. Shelves of desktops are
common for small clusters as they are usually cheaper
and less likely to have cooling problems. Their dis-
advantages include the fact that they take up more
space, the lack of cable management leading to more
difficult maintenance, and generally poor aesthetics.
Additionally, most such systems violate seismic safety
regulations.

Rack mounted systems are typically slightly expensive
due to components which are produced in lower vol-
umes as well as higher margins in the server market.
Additionally, racks or cabinets cost more then cheap
metal shelves. In return for this added expense, rack
mount systems deliver higher density, integrated cable
management, and, usually, improved aesthetics.

Blade systems are the most expensive by far. They
offer higher density, easier maintenance, and a neater
look. The highest density options are often over twice
as expensive with significantly lower peak performance
due to the use of special low-power components.

A minor sub-issue related to rack mount systems is
cabinets vs. open, telco style racks. Cabinets look
more polished and can theoretically be moved around.
Their disadvantages are increased cost, lack of space
making them hard to work in, and being prone to
overheating due to restricted airflow. Telco racks do
not look as neat and are generally bolted to the floor,
but they allow easy access to cables and unrestricted
airflow. In our case, we use vertical cable management
with doors which makes Fellowship look fairly neat
without requiring cabinets.

The projected size of Fellowship drove us to a rack
mount configuration immediately. We planned from
the start to eventually have at least 300 CPUs, which
is pushing reasonable bounds with shelves. We had a
few problems with our initial rack confirmation. First,

Figure 6: Fellowship’s switch and patch panel racks

the use of six inch wide vertical cable management did
not leave use with enough space to work easily. We
used ten inch wide vertical cable management when
we expanded to a second row of racks to address this
problem. Second, the choice of making direct runs
from nodes to the switch resulted in too much cable
running to the switch. When we expanded to a sec-
ond row of racks we added patch panels to them and
the existing rack and moved the switch next to a new
rack of patch panels. This substantially simplified our
cabling. The patch switch and central patch panel can
be seen in Figure 6. The third problem we encountered
was that we were unable to mount some core systems
in the racks we allocated for the core systems. We
have mounted some of our core systems in a separate
cabinet as a result and plan to add a dedicated cabinet
in the future.

4 Lessons Learned

We have learned several lessons in the process of build-
ing and maintaining Fellowship. None took us com-
pletely by surprise, but they are worth covering as
they can and should influence design decisions.

The first and foremost lesson we have learned is that
with a cluster, relatively uncommon events can be-
come common. For example, during initial testing
with the Pentium III nodes we infrequently encoun-
tered two BIOS related problems: if BIOS serial port
redirection was enabled, they system would occasion-
ally hang and PXE booting would sometimes fail.

With the console redirection, we thought we had fixed
the problem by reducing the serial ports speed to
9600 bps, but in fact we had just made it occur dur-
ing approximately one boot in 30. This meant that
every time we rebooted, we had to wait until it ap-
peared everything had booted and then power cycle
the nodes that didn’t boot. In the end we were forced
to connect a keyboard and monitor and disable this
feature. Similarly, PXE problems did not appear se-
rious and appeared resolved with one node, but with
40 nodes, they became a significant headache. In the
end we implemented the reboot hack described in the
Node Configuration Management section. In addi-
tion to these BIOS failures, we initially experienced
hardware failures, most power supplies, at nearly ev-
ery power cycle. This seemed high at first, but the
problems mostly settled out over time. With a single
machine this wouldn’t have been noticeable, but with
many machine it became readily apparent that the
power supplies were poorly manufactured. Later on
this was reinforced as at around three years of opera-
tion the nodes stared failing to POST. We eventually
concluded the problem was with due to incremental
degradation in the power supplies because the boards
worked with a new supply. After the power supplies,
the next most common component to fail has been
the hard drives. In the Pentium III nodes they were
the notorious IBM Deathstar disks which lead to a
high failure rate. In other system the failure rate
has been lower, but still significant. When we cre-
ated specifications for the the custom cases used for
the Opterons, we specified removable disks. This has
simplified maintenance significantly.

A lesson derived from those hardware failures was that
neatness counts quite a bit in racking nodes. To save
money in the initial deployment, we ran cables directly
from the switch to the nodes. This means we have a lot
of slack cable in the cable management, which makes
removing and reinstalling nodes difficult. We ended
up adding patch panels in each rack to address this
problem. Based on this experience we have considered
blades more seriously for future clusters, particularly
those where on site support will be limited. The abil-
ity to remove a blade and install a spare quickly would
help quite a bit. Thus far the increased initial cost has
out weighed these benefits, but it is something we’re
keeping in mind.

A final hardware related lesson is that near the end of
their lives, nodes may start to fail in quantity as par-
ticular components degrade systemically. The main
thing here is to keep an eye out for this happening.
When a trend becomes apparent, it may be time for
wholesale replacement rather than expending further
effort on piecemeal repairs.

#!/bin/sh
FPING=/usr/local/sbin/fping
NODELIST=/usr/aero/etc/nodes-all

${FPING} -a < ${NODELIST} | \
xargs -n1 -J host ssh -l root host $*

Figure 7: oneallnodes script

#!/bin/sh
restart_key=/home/root/.ssh/sge_restart.key
if [-r ${restart_key}]; then

keyarg="-i ${restart_key}"
fi
export
QSTAT=/usr/local/sge/bin/fbsd-i386/qstat
FPING=/usr/local/sbin/fping
export SGE_ROOT=/usr/local/sge
export SGE_CELL=fellowship

${QSTAT} -f | grep -- -NA- | \
cut -d@ -f2 | cut -d’ ’ -f1 | \
${FPING} -a | \
xargs -I node ssh ${keyarg} root@node

/etc/rc.d/sge restart

Figure 8: kickexecds script

We have also learned that while most HPC software
works fine on FreeBSD, the high performance com-
puting community strongly believes the world is a
Linux box. It is often difficult to determine if a
problem is due to inadequate testing of the code un-
der FreeBSD or something else. We have found that
FreeBSD is usually the cause of application problems
even when Linux emulation in involved. We have had
good luck porting applications that already support
multiple platforms to FreeBSD. There are some occa-
sional mismatches between concepts such as the idea
of “free” memory, but the work to add features such
as resource monitoring is generally not difficult and
simply requires reading manpages and writing simple
code. We hope that more FreeBSD users will consider
clustering with FreeBSD.

System automation is even more important than
we first assumed. For example, shutting down the
system for a power outage can be done remotely
due to our power controllers, but until we wrote a
script to allow automated connections to multiple con-
trollers, it required manual connections to dozens of
controllers making the process time consuming and
painful. Other examples include the need to perform
operations on all nodes, for example restarting a dae-
mon to accept an updated configuration file. To sim-
plify this we have created a simple script which han-

dles most cases and nicely demonstrates the power of
the Unix tool model. The script, onallnodes is shown
in Figure 7. In general we find that many problems
can be solved by appropriate application of xargs and
appropriate Unix tools. For example the script in Fig-
ure 8 restarts dead SGE execution daemons on nodes.
By running this out of cron we were able to work
around the problem while working to find a solution.

In addition to the technical lessons above, we have
learned a pair of related lessons about our users. Both
are apparently obvious, but keep coming up. First,
our users (and, we suspect, most HPC users) tend to
find something that works and keep using it. They are
strongly disinclined to change their method of opera-
tion and are unhappy when forced to do so. For this
reason, we recommend that as much standard pro-
cedure as possible be developed and working before
users are introduced to the system. It also suggests
that voluntary adoption of practices will only work if
a large benefit is involved and will never completely
work. We have found this to be particularly true in re-
gards to the scheduler. Second, because our users and
domain experts3 and not computer scientists, they of-
ten maintain mental models of the cluster’s operation
that are not accurate. For example, many believe that
jobs that start immediately would inevitably complete
before jobs that start later. While this seems logi-
cal, the only way jobs could start immediately would
be for the system to be heavily over subscribed lead-
ing to substantial resource contention and thus large
amounts of unnecessary swapping and excessive con-
text switches which in turn can result in much longer
job completion times. Another example is that while
many users are interested in optimization and often
micro-optimization, they often have a mental model
of hardware the assumes no memory caches and thus
discount cache effects.

5 Thoughts on Future Clusters

To meet our users ever expanding desire for more com-
puting cycles and to improve our ability to survive
disasters, we have been investigating the creation of a
second cluster. In the process we have been in con-
sidering ways the system should be different from the
current Fellowship architecture. The main areas we
have considered are node form factor, storage, and
network interconnect.

The locations we have been looking at have been en-
gineered for cabinets so we are looking at standard 1U
nodes and blades instead of our current custom, front-

3Including real rocket scientists.

port solutions. In many regards the density and main-
tainability of blades would be ideal, but cost consid-
erations are currently driving us toward 1U systems.
The new systems will probably have at least 8 cores
in a 1U form factor though.

Due to the fact that disks are the largest source of fail-
ures in our newer machines and that most users don’t
use them, we are considering completely eliminating
disks in favor of high performance networked storage.
The aggregate bandwidth from clustered storage prod-
ucts such as those from Isilon, NetApp, and Panasas
easily exceeds that of local disk without all the nui-
sance of getting the data off the local storage at the
end. There are two issues that concern us about this
option. First, we can easily swap to network stor-
age. Second, clustered storage is fairly expensive. We
would be eliminating around $100 per node in disk
costs, but that will not be enough to buy a large quan-
tity of clustered storage. We think both of these issues
are not too serious, but they are potential problems.

The use of Gigabit Ethernet as the Fellowship inter-
connect is working, but we do have some applica-
tions like computational fluid dynamics and radiation
damage modeling where a higher bandwidth, lower la-
tency link would be more appropriate. Additionally,
our goal of moving away from having any storage on
the nodes is leading us toward an architecture which
places heavier demands on the networks. As a result
we are considering both InfiniBand and 10Gb Myrinet
interconnects.

For the most part, the other decisions in Fellowship’s
design have worked out and we think maintaining the
basic architecture would be a good idea.

6 Future Directions & Conclusions

Currently Fellowship is working well and being used to
perform important computations on a daily basis. We
have more work to do in the area of scheduling, par-
ticularly on improving response time for short jobs,
but things are working fairly well overall. Another
area for improvement is better documentation to allow
users to find what they need quickly and use the sys-
tem correctly. We have made some progress recently
with the migration of most of our documentation to a
MediaWiki based Wiki system. We hope the ease of
editing will help us write more documentation.

We are currently working with a team of students at
Harvey Mudd College to add a web based interface to
Fellowship. The interface is being built to allow users
to submit inputs for specific jobs, but is being built on

top of tools which allow generic access to the cluster.
We hope this will allow us to attract new classes of
users.

Additionally, we have ongoing research work in the
area of job isolation to improve both the security of
jobs and the predictability of their run time. We are
looking at ways to extend the light weight virtualiza-
tion facilities of the FreeBSD jail [jail(8)] framework
to add support for stronger enforcement of job bound-
aries.

We feel that FreeBSD has served us well in providing
a solid foundation for our work and is generally well-
supported for HPC. We encourage others to consider
FreeBSD as the basis for their HPC clusters.

References

[Becker] Donald J. Becker, Thomas Sterling, Daniel
Savarese, John E. Dorband, Udaya A. Ranawak,
Charles V. Packer, Beowulf: A Parallel
Workstation for Scientific Computation
Proceedings, International Conference on
Parallel Processing, 1995.

[Columba] NAS Project: Columbia.
http://www.nas.nasa.gov/About/Projects/
Columbia/columbia.html

[Davis] Brooks Davis, Michael AuYeung, Gary
Green, Craig Lee. Building a High-performance
Computing Cluster Using FreeBSD. Proceedings
of BSDCon 2003, p. 35-46, September 2003.

[diskless(8)] FreeBSD System Manager’s Manual.
diskless(8).

[jail(8)] FreeBSD System Manager’s Manual. jail(8).

[Gerzo] Daniel Gerzo. Introduction to NanoBSD.
http://www.freebsd.org/doc/en US.
ISO8859-1/articles/nanobsd/

[MPI] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/mpi-11.ps

[OSCAR] Open Source Cluster Application
Resources.
http://oscar.openclustergroup.org/

[ROCKS] Rocks Cluster Deployment System.
http://www.rocksclusters.org/

[SciClone] The College of William and Mary.
SciClone Cluster Project.
http://www.compsci.wm.edu/SciClone/

[Tolkien] J.R.R. Tolkien. The Lord of the Rings
1955.

[WindowsCCS] Windows Compute Cluster Server
2003.
http://www.microsoft.com/
windowsserver2003/ccs/

All trademarks, service marks, and trade names are the
property of their respective owners.

