
Support for Radio Clocks in OpenBSD

Marc Balmer <mbalmer@openbsd.org>
The OpenBSD Project, Micro Systems Marc Balmer

Abstract

Every computer is equipped with at least a clock chip
or a general purpose device to provide a timer function.
While these timers are certainly precise enough for mea-
suring relatively short periods of time, they are not well
suited for keeping the correct time and date over a longer
period, since almost every chip drifts by a few seconds
per day. Even so called real-time clocks only approxi-
mately meet the real time.

External time sources can be used to synchronize the
local clock with a much preciser time information. Time
signals are disseminated over various systems, the best
known are the US american GPS (Global Positioning
System) and Time Signal Stations. Time signal sta-
tions are available in many countries; while the coding
schemes vary from time signal station to time signal sta-
tion, the decoding principles are similar.

This paper outlines the general problems of setting a
computers time at runtime; it will then give an overview
about time signal stations and the GPS system. In the last
sections the OpenBSD implementation is detailed.

1 Introduction

1.1 Adjusting the System Time

While receiving and decoding the time information is
comparatively simple, introducing the current time into
the computer system may be a complex task. Generally,
it is recommended to set the system time during the boot
procedure, for example as part of the startup procedure.
In this case, everything is simple and no problems will
arise. If it is, however, intended to update the system
time while the computer is running and possibly execut-
ing programs that rely on absolute time or on time inter-
vals, serious problems may occur.

There are two generally different concepts to change
the system time at runtime. The first concept gives max-

imum priority to the continuity of the time, i.e. the time
may be compressed or streched, but under no circum-
stances may a discrete time value get lost. The second
concept regards time as a sequence of time units with
fixed length which can neither be stretched nor com-
pressed, but is allowed to miss or insert a time unit.

The distinction between the two different methods is
necessary as in every environment the time must not be
changed without prior consideration of the software that
is running. Imagine a daemon program that has to start
other programs at a given time: If the continuity of the
time is broken up, a particular program may never be
started. Such software would only run properly if time
adjustment is done by stretching or compressing the time
axis.

Other software may not rely on the absolute time but
on the accuracy of the system clock (tick) rate. If, in
this case, the time is adjusted by speeding-up or slowing-
down the tick rate (i.e. stretching or compressing the
time axis), this software will fail. Such software would
only run properly if time adjustment is done just by
changing the time settings.

If both types of software simultaneously run on the
same system, the time cannot be adjusted without pro-
ducing unpredictable results. In this case, the system
time should better not be adjusted at runtime.

2 Time Signal Stations

In the following sections the focus is on time signal sta-
tions that emit official time using longwave transmitters.

2.1 Germany: DCF77

An ultra-precise time mark transmitter in Germany,
called DCF77, emits a 77.5 kilohertz signal modulated
by the encoded current time. This time signal can be
used to adjust a computer’s real-time clock and to ensure

accurate calendar day and time of the system. An easy-
to-build receiver and decoder can be directly attached to
a free port; a special driver is needed to decode the in-
coming time information and to update the system clock
whenever needed and desired.

Principally, there are two different possibilities to syn-
chronize the system clock with the DCF77 signal. First,
the system clock can be set every time a valid time infor-
mation is received from the time-mark transmitter; sec-
ondly, the update can be done in predefined time periods,
for example every 5 minutes. Since the accuracy of the
real-time clock device is normally good enough to ensure
precise system time and date over a short time period, the
second possibility may not only suffice but also minimize
system overhead.

2.1.1 The DCF77 Timecode

The DCF77 signal not only provides a very stable fre-
quency, but is also continuously modulated with the cur-
rent date and time information. The bit codes to provide
date and time information are transmitted during the 20th
and 58th second of a minute, each bit using a 1-second
window. The transmitter signal is reduced to 30the be-
ginning of each second. This reduction lasts for 100 or
200 milliseconds to encode a bit value of 0 or 1, respec-
tively. There is no power reduction in the 59th second;
this encodes the beginning of a new minute, so that the
time information transmitted during the last minute may
be regarded as valid. In consequence, the encoded time
information has a maximum precision of one minute.
The current second can only be determined by count-
ing the bits since the last minute gap. The following
additional information is included in the DCF77 code:
daylight saving time, announcement of a leap second at
midnight for time adjustments, spare antenna usage and
others.

The DCF77 time signal station uses the following en-
coding scheme to transmit time information:

Bit 15 Call bit
Bit 16 Announcement of DST change
Bit 17-18 Indication of DST
Bit 19 Announcement of a leap second
Bit 20 Start of encoded time information
Bits 21-27 Minute
Bit 28 Parity
Bits 29-34 Hour
Bit 35 Parity
Bits 36-41 Day of month
Bits 42-44 Day of week
Bits 45-49 Month
Bits 50-57 Year
Bit 58 Parity

The time information is in German legal time, that is
UTC+1 (or UTC+2 during daylight saving time).

2.2 Switzerland: HBG

The Swiss HBG time signal stations emits the official
Swiss time on a frequency of 75 kHz from a transmit-
ter located in Prangins near Geneva. Since 2001 it uses
an encoding scheme that is compatible with the German
DCF77 station. The only difference to the DCF77 code
occurs during the first second of a minute: While there is
only one reduction of the emission power in the DCF77
signal, there are two reductions of 100 ms with a gap of
100 ms in the HBG signal. This additional reduction of
power can be used to differentiate between the two sta-
tions. During the first second of a new hour, we see three
such power reductions, at noon and midnight, even four
reductions are used.

2.3 Japan: JJY

The official japanese time is disseminated using two
longwave time signal station transmitter, one is located
on Mount Otakadoy near Fukushima and the second on
Mount Hagane on Kyushu Island. The code is different
from the Swiss and German codes and due to the lack of a
suited receiver and for obvious geographical constraints,
no driver support has yet been writte for JJY.

2.4 Connecting the Receiver

Various techniques are applicable to connect a DCF77
receiver to a computer system: The most obvious way
is to convert the two states of the amplitude to a square
wave signal, i.e. to a stream of zeroes and ones. In this
case, the length of the reduction is determined to define
the logical bit state.

A more sophisticated way that is used by most com-
mercially available receivers is to provide a data line with
the decoded time information and a separate clock line.
These lines can be used to load a shift register or to enter
the data on an input port bit using the clock line as an in-
terrupt generating strobe. A device driver is required to
read the data line and to combine the bits to the complete
time information. In this case, the time of the amplitude
reduction is measured by the receiver.

Most DCF77 receivers, however, not only provide the
data and clock line but also the undecoded square wave
signal on the clock line as additional information. This
allows for a rather unconventional, but easy, method to
both connect the receiver to the computer hardware and
decode the time information. In essence, this method is
based on interpreting the undecoded square wave signal
as if it were an RS-232 bit stream signal so that a standard
serial interface and the standard read command can be
used.

2.4.1 Using the Serial Interface

Before the bit stream signal can be used as an RS-232 in-
put signal, the required communication parameters must
be determined and the controller be programmed accord-
ingly: The longest duration of the low state of the square
wave signal (200 ms) is taken as ten consecutive serial
bits (one start bit, eight data bits, one parity bit) each of
20ms, so that a total of 50 bits would be transfered per
second. Consequently, if the serial interface is set to 50
Baud, 8 data bits and even-parity, a 20ms section of the
square wave signal represents one bit in the controllers
input byte; the first 20ms section, however, is not consid-
ered since it is interpreted as a start bit.

_ ___________________________
|_|_|_|_|_|_|_|_|_|_|_|_|
Serial data format
S 0 1 2 3 4 5 6 7 8 P S

_ ___________________
|_________| Transmitting a 0 bit (100ms)

_ _______
|_____________________|
Transmitting a 1 bit (200ms)

A logical 0 is encoded from the time signal station
as a low-level pulse of 100 ms duration and therefore
causes the serial controller’s input byte to contain binary
11110000 (hexadecimal F0). A logical 1 encoded as a
200 ms low-level pulse simply causes an input byte of 0.

The only hardware requirement to connect the square
wave signal from the DCF77 receiver to a serial RS-232
port of a computer is a TTL-to-V.24 level shifter. Only
the receive data (RxD) and ground (GND) pins are used,
all other pins remain unused.

2.5 Decoding the Time
The very low level functions do nothing more than col-
lecting the time bits and storing them in an appropriate
structure. As the low-level interface may need to syn-
chronize with the DCF77 transmitter, it cannot be ex-
pected to return very quickly. Under worst-case condi-
tion, i.e. if the function is entered just after the first bit
has been transmitted, it may take up to two minutes until
the function has completely collected the time informa-
tion.

2.5.1 Collecting the Bits

There is, however, still a problem when using the serial
interface to decode the time information. This problem
is due to the evaluation of the parity bit. Both input byte
values, hexadecimal F0 and 0, would need the parity bit

to have the even (high level) state. This is alright in the
first case; but in the second case (200 ms low-level state),
the input signal has still low-level when the parity bit is
expected so that a parity error is generated. The decoding
routine has, therefore, to consider this condition.

2.5.2 The Decoding Algorithm

At any time the decoder is started, it must synchronize
with the DCF77 time signal station. To do so, it waits for
a delay between two bits that is significantly longer than
one second, e.g. 1.5 seconds.

After this prolonged gap, the next bit to receive is bit
zero of the subsequent time information packet. The al-
gorithm then picks up the bits until all 59 data bits are
collected. In case the algorithm falls out of synchroniza-
tion and misses some bits, perhaps due to bad reception
of the radio signal, it detects the data loss by the time
elapsed between two bits which must not be more than
one second. In this case, the algorithm synchronizes with
the DCF77 signal again and restarts.

Once the complete time information is received, it is
immediately decoded and marked valid as soon as bit 0
of the following minute starts. The time obtained can
then be used to adjust the system time.

If the time decoding function is re-entered within
less than one second interval, it does not need to re-
synchronize. In this case, the function waits for the next
data bit and stores it. In consequence, such a function
needs at least two minutes only for the first call; if, how-
ever, called at regular and short intervals, the function
returns after about one second so that, for example, a
display can continuously be updated.

2.6 We Are Always Late

The method described above to decode the DCF77 data
bits has one disadvantage: We are always late. When the
read function returns, indicating that a new second just
started, we are already late for 100 or 200 milliseconds
which is the time that is needed to transmit the data bit.
This delay must be taken into consideration when the ex-
act time of the starting of a new second is needed.

3 GPS

The American Global Positioning System, or GPS for
short, works completely different than time signal sta-
tions and its primary purpose is not the dissemination of
time, but accurate three-dimensional position informa-
tion all over the world. To determine the exact position
with the help of satellites, very high presion timing is
used. This makes the GPS system a very interesting op-

tion to receive time information: It is available globally
and it inherently carries very precise time information.

GPS receivers can be very cheap and are available as
USB connected devices, serially attached receivers, even
PC-Card or CF attached devices exist.

Professional GPS receivers are available as PCI
cards, e.g. from the German manufacturor Meinberg
Funkuhren.

OpenBSD currently has support for GPS in the
nmea(4) and mbg(4) codes which are described in the
following section.

4 OpenBSD Implementation

All time signal stations use their own code. All have
some properties of their own, like the announcement of
leap seconds or the announcement of a daylight saving
time change in the DCF77 code. Time is encoded in
a local timezone for most stations. In consequence, all
drivers that decode a particular time signal station code
should follow a common, yet minimal, protocol: Report
the time in coordinated universal time (UTC), not the lo-
cal time.

4.1 The Sensor Framework

OpenBSD has a sensor framework with sensors being
read-only values that report various environmental values
like CPU temparature, fan speeds or even acceleration
values if the computer is equipped with accelerometers.
Sensor values can be read using the sysctl(8) interface
from the commandline or in userland programs.

To support radio clocks, a new type of sensor has been
introduced, the timedelta sensor that reports the error (or
offset) of the local clock in nanoseconds. A radio clock
device driver provides a timedelta sensor by comparing
the local time with the time information received.

A userland daemon like ntpd(8) can then pick up this
time information and adjust the local clock accordingly.

Timedelta sensors not only report the error of the lo-
cal clock, but they also have a timestamp value indicating
when exactly the last valid time information has been de-
coded and a status flags indicating the quality of the time
information. Initially, this status is set to UNKNOW, it
will then change to OK once proper time information has
been received. Some radio clock drivers, e.g. udcf(4),
will degrade to the WARNING state if not valid time in-
formation has been recived for more than 5 minutes. If
not time is received for a longer period, the state will
eventually degrade to ERROR.

4.2 udcf(4)

During the development the actual driver implementa-
tion, I have used various Expert mouseCLOCK devices
manufactured in Germany by Gude Analog und Digital
Systeme.

The Expert mouseCLOCK USB and the Expert
mouseCLOCK are inexpensive devices available in sev-
eral variations. They can be interfaced serially or using
USB and decode either the German DCF77 station, the
Swiss HBG station, or the British MSF time signal sta-
tion.

Although the serial devices use standard V.24 signal
levels, they are not serial devices in the usual sense. They
use the signal pins to provide a serial stream of bits that
can be decoded with the method outlined above.

The USB attached devices interestingly contain an
ISDN controller with USB interface that controls the re-
ceiving part using auxillary ports of the ISDN controller.

The implemented driver, udcf, attaches to a uhub de-
vice. When the device is plugged in to a USB hub, the
driver programs the device to provide power to the re-
ceiver part. It then sets up a timer in 2000 ms to let the
receiver stabilize. When this timer expires, the driver
starts its normal operation by polling the device over the
USB bus for the falling edge of the signal in a tight loop.
Once the falling edge is detected, this fast polling stops
and a set of four timers is used to decode the signal.

When the device is removed from the USB hub, all
timers are stopped.

On the falling edge of the signal, i.e. at the beginning
of a second, fast polling is stopped and some timers are
started using timeout(9). Any pending timers are first
reset using timeout del(9).

The first timer expires in 150 ms. Its purpose is to de-
tect the bit being transmitted. The current signal level is
measured — if the low power emission was 100 ms long,
we have a high level again;, if it is a 200 ms emission, we
still have a low level. The bit detected is stored.

The second timer expires in 250 ms and is used to de-
tect if we decode the German DCF77 or the Swiss HBG
signal.

The third timer expires in 800 ms. It is used to restart
fast polling over the USB bus to detect the falling edge of
the signal at the start of the next second. Note that there
might not be a falling edge for more than one second dur-
ing the minute gap after the 58th second. This situation
is detected using a third timer.

The fourth timer expires in 1500 ms after the falling
edge. When it expires, we have detected the 59th second.
Note that this timer will not expire during seconds 0-58
as all timers are reset when the falling edge is detected
using the fast polling loop.

In the 59th second we decode and validate the com-

plete time information just received and at the beginning
of the next second we stamp the time information with
microtime(9) and mark it as valid. A userland program
can get at this information and knowing the received time
information and the exact system time when it was valid,
the userland program can calculate the exact time.

The fifth timer expires in 3000 ms. If it ever expires,
we have lost reception. We set an error bit and stop the
whole decoding process for some time.

The four timers need not be very precise (10% toler-
ance is very acceptable) - the precision of the time decod-
ing is solely determined by the detection of the falling
edge at the start of a second. All means should be taken
to make this detection as precise as possible.

When the algorithm is started we do not know in
which second we are, so we first must synchronize to the
DCF77 signal. This is done by setting the state to syn-
chronizing, in which we don’t store the bits collected,
but rather wait for the minute gap. At the minute gap, the
state is changed from synchronizing to receiving. When-
ever we lose reception or time information gets invalid
for other reasons, we fall back to the synchronizing state.

4.2.1 Using Interrupts

The driver described above is very easy to use. But it has
limitations as polling over the USB bus has to be done
to detect the falling edge at the beginning of a second. It
is basically this polling loop that limits the precision of
the time information. Higher precision can be obtained
when the falling edge of the signal causes an interrupt.
No polling is needed then and the decoding driver needs
only some slight adjustments.

When the falling edge is detected, further interrupts
from the device are disabled and the second timer, used
to restart fast polling in the udcf driver, is used to reen-
able interrupts from the time signal receiver, thus de-
bouncing the signal.

The serial versions of the time signal receivers can be
rather easily used to generate these interrupts. Instead of
using the standard wiring, the data line that provides the
signal level is attached to an interrupt generating pin of
the serial port.

The default serial driver must of course be disabled
and the time signal station driver must program the
UART accordingly.

4.3 nmea(4)
To use GPS receivers as time source, nmea(4) has been
added to OpenBSD. Unlike the other implementations
presented in this paper, nmea(4) is not a device driver,
but a tty line discipline. A tty line discipline consists
of a set of functions that are called by the tty driver on

events like a character has been received, a character is
to be sent etc. Thus a line discipline can look at (and
manipulate) a serial data stream on a tty device.

The purpose of the nmea(4) line discipline is to de-
code a serial NMEA 0183 data stream originating from
an attached GPS device. NMEA is rather simple, ASCII
based protocols where a NMEA speaking device emits
so called sentences that always start with a $ character
and extend to a CR-LF pair. No sentence is longer than
82 characters and there is an optional checksum. To de-
code the time information, it is sufficied to decode the
GPRMC sentence, the ”Recommended Minimum Soe-
cific GPS/TRANSI Data”.

nmea(4) supports all GPS devices that emit NMEA
sentences and that attach to a serial port of some sort
(RS-232, USB, or PC-Card).

There is a problem, however, with simply decoding the
NMEA sentence. We have no indication when exactly
the time information just received was actually valid.
The nmea(4) line discipline takes a local timestamp when
it receives the initial $ character and uses this timestamp
as the base for the calculation of the local clock offset.
This automatically leads to jitter but nevertheless this
method gives us accurate date and time information.

4.3.1 TTY Timestamping

To address this problem, tty timestamping has been
added to the OpenBSD tty driver.

Some GPS receivers provide a highly accurate pulse-
per-second, PPS, signal. A PPS signal typically has mi-
crosecond accuracy and with PPS enabled, the GPRMC
sentence indicates the time (and position) of the last PPS
pulse. So if we can measure the exact local time when
the pulse occurs, we can later, when we received the
GPRMC sentence, calculate the local offset with very
high precision.

This is done in the tty driver when tty timestamping
is enabled. Once enabled, the tty driver will take a lo-
cal timestamp at the very moment the PPS signal oc-
curs (which must be wired to the serial ports RTS or
DCD line). The nmea(4) line discipline will then use
this timestamp as the base for its calculations once the
GPRMC sentence is received.

To attach the nmea(4) line discipline to a tty device,
the utility program nmeaattach(8) can be used which can
also enable tty timestamping.

Userland programs that want to use the NMEA data as
well can do so as nmea(4) does not consume the data, it
only looks at it. So with the proper setup, a general GPS
software like gpsd can be used to do whatever you want
with e.g. the position data while the running kernel just
uses the time information to keep the clock adjusted.

4.4 mbg(4)
The mbg(4) driver for radio-clocks supports the
professional radio-clocks manufactured by Meinberg
Funkuhren in Bad Pyrmont, Germany. Meinberg pro-
duces a range of industrial grade receivers for the Ger-
man DCF77 time signal station and the global GPS sys-
tem. All cards have a local real-time clock that can be
free-running on a local oscillator, which on request is
temperature compensated.

The mbg(4) currently supports the PCI32 and PCI511
DCF77 receiver cards and the GPS170 GPS receiver
card. All cards provide the exact time information which
is available to the driver at any time, plus status informa-
tion.

Especially with the newer cards PCI511 and GPS170
a very high precision can be achieved, as these cards take
the internal timestamp at the very moment the first com-
mand byte is written to the card over the PCI bus. The
mbg(4) driver uses a very small critical section, protected
by splhigh(9), to first take the local timestamp and then
send the command to the card. The critical section is im-
mediately left and the driver waits then for the card to
return the time information.

Using a kernel timeout(9), the card is queried for time
information every ten seconds.

As of the time of this writing, the mbg(4) driver is still
under active development, so we expect to achieve higher
precision with this driver in the future.

5 Conclusion

With the advent of timedelta sensors, tty timestamping
and the drivers presented in this paper, OpenBSD now
has complete support for precise time acquisition, keep-
ing and distribution.

The elegant concept of timedelta sensors, an idea by
Theo de Raadt, provides a very thin layer of abstraction
that allows to provide time information in a uniform way
to the sytem from devices as different as a time signal
station receiver that is polled over the USB bus to a PCI
based GPS receiver card.

The OpenNTPD daemon ntpd(8) can then be used to
distribute the time information in the network.

All this makes OpenBSD an ideal platform for time
servers.

6 Acknowledgments

Meinberg Funkuhren donated several PCI based GPS
and time signal station receiver cards for the develop-
ment of mbg(4).
Gude ADS donated several Expert Mouse CLOCK de-
vices for the development of the udcf(4) driver.

The concept of timedelta sensors was an idea of Theo de
Raadt who also did the implementation of the tty time-
stamping code.
Several OpenBSD users donated radio clocks of any kind
to help with time related development, which was much
appreciated.
Many OpenBSD developers helped in various ways, be
it by testing the code or by pushing me in the right direc-
tion.

7 Availability

nmea(4) and udcf(4) are included in OpenBSD since the
4.0 release. The newer mbg(4) driver will be included in
the upcoming 4.1 release.

http://www.openbsd.org/

About the Author

After working for Atari Corp. in Switzerland where he
was responsible for Unix and Transputer systems, Marc
Balmer founded his company micro systems in 1990
which first specialised in real-time operating systems and
later Unix. During his studies at the University of Basel,
he worked as a part time Unix system administrator.

He led the IT-research department of a large Swiss in-
surance company and he was a lecturor and member of
the board of Hyperwerk, an Institute of the Basel Univer-
sity of Applied Sciences.

Today he fully concentrates on micro systems, which
provides custom programming and IT outsourcing ser-
vices mostly in the Unix environment.

Marc Balmer is an active OpenBSD developer; he was
chair of the 2005 EuroBSDCon conference that was held
at the University of Basel.

In his spare time he likes to travel, to photograph and
to take rides on his motorbike. He is a licensed radioa-
mateur with the call sign HB9SSB.

