
puffs - Pass-to-Userspace Framework File System

Antti Kantee <pooka@cs.hut.fi>

Helsinki University of Technology

ABSTRACT

Fault tolerant and secure operating systems are a worthwhile goal.A known
method for accomplishing fault tolerance and security is isolation.This means running
separate operating system services in separate protection domains so that they cannot
interfere with each other, and can communicate only via well-defined messaging inter-
faces. Isolationand message passing brings inherent overhead when compared to ser-
vices doing communication by accessing each others memory directly. To address this,
the ultimate goal would be to be able to run the kernel subsystems in separate domains
during development and testing, but have a drop-in availability to make them run in ker-
nel mode for performance critical application scenarios. Still today, most operating sys-
tems are written purely with C and some assembly using the monolithic kernel approach,
where all operating system code runs within a single protection domain.A single error in
any subsystem can bring the whole operating system down.

This work presentspuffs- the Pass-to-Userspace Framework File System - shipped
with the NetBSD Operating System. It is a framework for implementing file systems out-
side of the kernel in a separate protection domain in a user process. The implementation
is discussed in-depth for a kernel programmer audience.The benefits in implementation
simplicity and increased security and fault tolerance are argued to outweigh the measured
overhead when compared with a classic in-kernel file system.A concrete result of the
work is a completely BSD-licensed sshfs implementation.

Keywords: userspace file systems, robust and secure operating systems, message-passing
subsystems, BSD-licensed sshfs

1. Intr oduction

"Microkernels have won", is a famous
quote from the Tanenbaum - Torvalds debate from
the early 90’s. Microkernel operating systems are
associated with running the operating system ser-
vices, such as file systems and networking proto-
cols, in separate domains, and component com-
munication via message passing through channels
instead of direct memory references. This is
known as isolation and provides an increase in
system security and reliability in case of a misbe-
having component [1]; at worst the component
can corrupt only itself instead of the entire sys-
tem. However, most contemporary operating sys-
tems still run all services inside a single

protection domain with the popular argument
being an advantage in performance.Even if we
were to disregard research which states that the
performance difference is irrelevant [2], we might
be willing to make a tradeoff for a more robust
system.

A separate argument is that we do not need
to see issues only in black-and-white.An operat-
ing system’s core can be monolithic with the
associated tradeoffs, but offer the interfaces to
implement some services in separate domains.
An HTTP server or an NFS server can be imple-
mented either as part of the monolithic kernel or
as a separate user process, even though they both
have their "correct" locations of implementation.



There is obviously room for both a microkernel
and a monolithic kernel approach within the same
operating system. Another relevant argument is
the use of inline assembly in an operating system:
almost everyone agrees that it is wrong, yet not
using it makes the system less performant.
Clearly, performance is not everything.

This work presentspuffs, the Pass-To-
Userspace Framework File System for NetBSD.
puffs provides an interface similar to the kernel
virtual file system interface, vfs [3], to a user
process. puffs attaches itself to the kernel vfs
layer. It passes requests it receives from the vfs
interface in the kernel to userspace, waits for a
result and provides the caller with the result.
Applications and the rest of the kernel outside of
the vfs module cannot distinguish a file system
implemented on top ofpuffsfrom a file system
implemented purely in the kernel. For the
userspace implementation a library, libpuffs, is
provided. libpuffs not only provides a program-
ming interface to implement the file system on,
but also includes convenience routines commonly
required for implementing file systems.

puffs is envisioned to be a step in moving
towards a more flexible NetBSD operating sys-
tem. It clearly adds a microkernel touch with the
associated implications for isolation and robust-
ness, but also provides an environment in which
programming a file system is much easier than
compared to the same task done in the kernel.
And instead of just creating a userspace file sys-
tem framework, the lessons learned from doing so
will be turned upside down and the whole system
will also be improved to better facilitate creating
functionality such aspuffs. The latter part, how-
ev er, is out of the scope of this paper.

Related Work

There are several other packages available
for building file systems in userspace. When this
project was begun in the summer of 2005, the
only option available for BSD was nnpfs, which is
supplied as part of the Arla [4] AFS implementa-
tion. Arla is a portable implementation of AFS.
It relies on a small kernel module, nnpfs, which
attaches to the host operating system’s kernel and
provides an interface for the actual userspace AFS
implementation to talk to.A huge drawback was
that at the time it only supported caching on a file
level. Since,it has developed block level caching
and some documentation on how to write file sys-
tems on top of it [5].

The best known userspace file system
framework is FUSE, Filesystem in USErspace
[6]. It supports already hundreds of file systems
written against it. On a technical level, puffsis
fairly similar to FUSE, since they both export
similar virtual file system interfaces to userspace.
However, the are differences already currently in,
for example, pathname handling and concurrency
control. Thedifferences are expected to grow as
the puffsproject reaches future goals.Even so,
providing a source compatible interface with
FUSE is an important goal to leverage all the
existing file systems (see Chapter 5). In the sum-
mer of 2005 FUSE was available only for Linux,
but has since been ported to FreeBSD in the
Fuse4BSD [7] project.A derivate project of the
FreeBSD porting effort, MacFUSE [8], recently
added support for Mac OS X.A downside from
the BSD point-of-view is that userspace library
for FUSE is available only under LGPL and that
file systems written on top of it have a tendency
of being GPL-licensed.

Apart from frameworks merely exporting
the Unix-style vfs/vnode interface to userspace
for file system implementation, there are systems
which completely redesign the whole concept.
Plan 9 is Bell Labs’ operating system where the
adage "everything is a file" really holds: there are
no special system calls for services like there are
on Unix-style operating systems, where, for
example, opening a network connection requires a
special type of system call. Plan 9 was also
designed to be a distributed operating system, so
all the file operations are encoded in such a way
that a remote machine can decode them. As a
roughly equivalent counterpart to the Unix virtual
file system, Plan 9 provides the 9P [9] transport
protocol, which is used by clients to communicate
with file servers. 9Phas been adapted to for
example Linux [10], but the greater problem with
9P is that it is relatively different from the
(Net)BSD vfs interface and it makes some
assumptions about file systems in general not
valid on Unix [10]. Therefore, it was not directly
considered for the userspace library interface.

DragonFly BSD has started putting forth
effort in creating a VFS transport protocol, which,
like 9P, would be suitable for distributed environ-
ments in which the server can exist on a different
network node than the client [11]. It is also
usable for implementing a file system in
userspace, but is a huge undertaking and restruc-
tures much of the kernel file system code.



The main reason for writing a framework
from scratch is that the ultimate goal of the work
is not to develop a userspace file system frame-
work, but rather to improve the flexibility and
robustness of the operating system itself.While
taking a more flexible route such as that of 9P
may eventually prove to be the right thing to do, it
is easier to take n small steps in reaching a goal
and keep the system functional all the time.Cur-
rently, especially the kernel side ofpuffs is very
lightweight and tries to be a good kernel citizen in
not modifying the rest of the kernel. Theultimate
goal is to gradually change this in creating a more
secure and reliable operating system.

Paper Contents

Chapter 2 discusses the architecture and
implementation ofpuffs on an in-depth technical
level. Chapter3 presents a few file systems built
on top ofpuffs. It discusses experiences in devel-
oping them. Chapter 4 presents performance
measurements and analyses the measured results.
Chapter 5 contains work being done currently and
outlines some future visions for development.
Finally, Chapter 6 provides conclusions.

2. puffsArchitecture

puffs is made up of four separate compo-
nents (see figure):

1. VFSattachment, including virtual mem-
ory subsystem and page cache integra-
tion. Thispart interfaces with the kernel
and makes sure that the kernel correct-
ness is enforced. (Chapter 2.1.)

2. Messaginginterface, which transports
requests to and from the file system
server. (Chapter 2.2.)

3. A user level adaption library, libpuffs,
which handles the details of the kernel
communication and provides supporting
routines. (Chapter2.3.)

4. The file system implementations them-
selves. (Chapter 3)

2.1. Virtual File System Attachment

Creating a new file system in the kernel is
done by attaching it to the kernel’s virtual file sys-
tem (vfs) [3] interface. Aslong as the file system
abides by the vfs layer’s call protocols, it is free to
provide the kind of file hierarchy and data content
it wishes.

puffsarchitecture

application

kernel

puffsvfs module (1)

libpuffs (3)

file server (4)

syscall

/dev/puffs (2)

user

kernel

user

The vfs layer is made up of two separate
interfaces: the actual virtual file system interface
and the vnode interface. Theformer deals with
calls involving file system level operations, such
as mount and unmount, while the latter always
involves an operation on a file; the vnode or vir-
tual node is an abstract, i.e. virtual, representation
of a file.

Vnodes are treated as reference counted
objects by the kernel. Oncethe reference count
for a vnode drops to zero, it is moved to the freel-
ist and said to enter aninactive state. However,
the file system in-memory data structures may
still hold weak pointers to the vnode at this point
and some vnode operations may prompt the file
system to attempt to rescue the vnode from the
freelist. Oncea vnode is irreversibly freed and
recycled for other use, it is said to bereclaimed.
At this point a file system must invalidate all
pointers to the vnode and in-memory file system
specific data structures relating to the vnode are
also freed [12].

A very central routine for every file system
is thelookuproutine in the vnode interface. This
routine takes in a pathname component and pro-
duces a vnode. It must return the same vnode for
the duration of the vnode’s lifetime, or else the
kernel could access the same file through multiple
different interfaces destroying consistency guar-
antees. puffs uses cookie values to map node
information between the kernel and the file server.
The file server selects a cookie value and



communicates it to the kernel upon node
creation1. The kernel checks that it was not
handed a duplicate, creates a new vnode and
stores the cookie value in the private portion of
the newly created vnode.This cookie value is
passed to the file server for all subsequent opera-
tions on the kernel vnode.A cookie → vnode
mapping is also stored in a hash list so thatlookup
can later determine if it should create a new
vnode or if it should return the an existing one.

The cookie shared by the file server and
kernel is of typevoid *. While this is not
enough to cover all file system nodes on a 32bit
architecture, it should be recalled that the cookie
value is used only to locate an in-memory file sys-
tem data structure and is valid only from node
creation to the reclaim operation and that this
cycle is controlled by the kernel. Most file
servers will simply use the address of the in-mem-
ory data structure as the cookie value and do map-
ping from the cookie to the file server node struc-
ture with a simple pointer typecast.Even further,
this address will be that of a generic libpuffs
node,struct puffs_node, and the file sys-
tem’s private data structure can be found from the
private data pointer instruct puffs_node.
This is not required, but as we will later see when
discussing the user library, the generic node pro-
vides some additional convenience features.

For interfacing between the kernel and the
file server, the vfs layer acts as a translator
between the in-kernel representation for vfs
parameters and a serialized representation for the
file server. This part is discussed further in Chap-
ter 2.2. Additionally, the vnode portion of the vfs
attachment implements the file system side of the
vnode locking protocol.

The vfs layer also acts as a semantic police
between the kernel and the user fs server. It
makes sure that the file server does not return any-
thing which the rest of the kernel cannot handle
and would result in incorrect operation, data cor-
ruption or a crash.

Short circuiting Non-implemented Operations

All user file system servers do not imple-
ment all of the possible operations; open and
close are examples of operations commonly not
implemented at all on the vnode level. Therefore,

1 A node can be created by the following opera-
tions: lookup, create, mknod, mkdir and symlink.
The first one just creates the node, while the final
four create the backing file and the node.

unless mounted with the debug flag
PUFFS_KFLAG_ALLOPS, operations unsup-
ported by the file server will be short circuited in
the kernel. To avoid littering operations with a
check for a supported operation, the default vnode
operations vector,puffs_vnodeop_p, defines some
operations to be implemented bypuffs_checkop().
This performs a table lookup to check if the oper-
ation is supported.If the operation is supported,
the routine makes aVOCALL() for the operation
from the vector puffs_msgop_pto communicate
with the file server. Otherwise it returns immedi-
ately. To make this approach feasible, the script
generating the vnode interface was modified to
produce symbolic names for the operations, e.g.
VOP_READDIR_DESCOFFSET, where they
were previously generated only as numeric val-
ues. Itshould be noted that all operations cannot
be directed topuffs_checkop(), since e.g. the
reclaim operation must do in-kernel bookkeeping
regardless of if the file server supports the opera-
tion in question. These operations use the macro
EXISTSOP() to check if they need to contact the
file server or is in-kernel maintenance enough.

puffs vnode op vector

{&vop_lookup_desc, puffs_lookup },

{&vop_create_desc, puffs_checkop },

{&vop_mknod_desc, puffs_checkop },

{&vop_open_desc, puffs_checkop },

...

{&vop_reclaim_desc, puffs_reclaim },

{&vop_lock_desc, puffs_lock },

{&vop_unlock_desc, puffs_unlock },

Kernel Caching

Caching relatively frequently required
information in the kernel helps reduce roundtrips
to the fs server, since operations can be short cir-
cuited already inside the kernel and cached data
provided to the caller. Caching is normal behav-
ior even for in-kernel file systems, as disk I/O is
very slow compared to memory access.

The file system cache is divided into three
separate caches: the page cache, the buffer cache
and the name cache. The page cache [13] is a fea-
ture of the virtual memory subsystem and caches
file contents. This avoids reading the contents of
frequently used files from the backing storage.
The buffer cache in turn [12,14] operates on disk
blocks and is meant for file system metadata.The



name cache [12,15] is used to cache the results of
the lookup from pathname to file system node to
avoid the slow path of the frequent
VOP_LOOKUP() operation.

To avoid doing expensive reads from the
file server each time data is accessed,puffsuti-
lizes the page cache like any other file system
would. Additionally, it provides the file server
with an interface to either flush or invalidate the
page cache contents for a certain file for a given
page range. These facilities can be used by file
servers which use backends with distributed
access. Sincepuffs does not operate on a block
device in the kernel, it does not use the buffer
cache at all.However, caching metadata is advan-
tageous [16] even if it is not backed up by a block
device. Supportfor caching metadata in the ker-
nel is planned in the near future.Finally,
puffsuses the name cache as any other file system
would, but additionally provides the file server
with a method to invalidate the name cache either
on a per-file basis, per-directory basis or for the
entire file system.

2.2. User-Kernel Messaging Interface

Messaging between the kernel and file
server is done through a character device. Each
file server opens/dev/puffs at mount time
and the communication between the file server
and kernel is done through the device. Theonly
exception is mounting the file system, for which
the initial stage is done by the file server by call-
ing the mount() system call. Immediately when
the device descriptor is closed the file system is
forcibly unmounted in the kernel, as the file
server is considered dead. This is an easy way to
unmount a misbehaving file system, although nor-
mally umount should be preferred to make sure
that all caches are flushed.

VFS and Vnode Operations

All vfs and vnode operations are initiated in
the kernel, usually as the result of a process doing
a system call involving a file in the file system.
Most operations follow a query-response format.
This means that when a kernel interface is called,
the operation is serialized and queued for trans-
port to the file server. The calling kernel context
is then put to sleep until a response arrives (or the
file system is forcibly unmounted).However,
some operations do not require a response from
the file server. Examples of such operations are
the vnode reclaim operation and fsync not called

with the flag FSYNC_WAIT. These operations
are enqueued on the transport queue after which
the caller of the operation continues executing.
puffscalls these non-blocking type operations
Fire-And-Forget (FAF) operations.

Before messages can be enqueued, they
must be transformed to a format suitable for
transport to userspace. The current solution is to
represent parameters of the operation as structure
members. Somemembers can be assigned
directly, but others such asstruct compo-
nentname must be translated because of point-
ers and other members the userland does not have
direct access to.Currently all this modifying is
done manually for each operation, but it is hoped
that this could be avoided in the future with an
operation description language.

Tr ansport

As mentioned above, the format of mes-
sages exchanged between the kernel and file
server is defined by structures.Every request
structure is subclassed from struct
puffs_req, which in C means that every struc-
ture describing a message contains the aforemen-
tioned structure as its first member. This member
describes the operation enough so that it can be
transported and decoded.

puffs_req members

struct puffs_req {

uint64_t preq_id;

union u {

struct {

uint8_t opclass;

uint8_t optype;

void *cookie;

} out;

struct {

int rv;

void *buf;

} in;

} u;

size_t preq_buflen;

uint8_t preq_buf[0]

__aligned(ALIGNBYTES+1);

};

The messaging is designed so that each
request can be handled by in-place modification
of the buffer. For most operations the request



structures contain fields which should be filled,
but the operationsread and readdir may return
much more data so it is not sensible to include
this space in the structure.Conversely,write does
not need to return all the data passed to userspace.

puffs_vnreq_read/_write

struct puffs_vnreq_readwrite {

struct puffs_req pvn_pr;

struct puffs_cred pvnr_cred;

off_t pvnr_offset;

size_t pvnr_resid;

int pvnr_ioflag;

uint8_t pvnr_data[0];

};

When querying for requests from the ker-
nel, the file server provides a pointer to a flat
buffer along with the size of the buffer. The ker-
nel places requests in this buffer either until the
next operation would not fit in the buffer or the
queue of waiting operations is empty. To facili-
tate in-place modification for operations which
require more space in the response than in the
query (read, readdir), the kernel leaves a gap
which can fit the maximal response.

This solution, however, is suboptimal. It
was designed before the continuation framework
(see Chapter 2.3) and does not take into account
that the whole flat buffer is not available every
time a query is made. The currently implemented
workaround is tomemcpy() the requests from the
buffer into storage allocated separately for the
processing of each operation.To fix this, the
query operation will eventually be modified to use
a set of buffers instead of one big buffer.

Responses from the user to the kernel use a
scatter-gather type buffering scheme. This facili-
tates both operations which return less or more
data than what was passed to them by the kernel
and also operations which do not require a
response at all.To minimize cross-boundary copy
setup costs, the ioctl argument structure contains
the address information of the first response.The
puffs_req in the first response buffer contains
the information for the second response buffer
and so forth. This way only one copyin is needed
per buffer instead of one for the header describing
how much to copy from where and one for the
buffer itself.

Snapshots

puffssupports building a snapshotting file
system. Whatthis means is that it supports the
necessary functionality to suspend the file system
temporarily into a state in which the file system
server code can take a snapshot of the file sys-
tem’s state. Denying all access to the file system
for the duration of taking the snapshot is easy:
the file system server needs only to stop process-
ing requests from the kernel. This is because,
unlike in the kernel, all requests come through a
single interface: the request queue.However, the
problem is flushing all cached data from the ker-
nel so that the file system is in a consistent state
and disallowing new requests from entering the
request queue while the kernel is flushing the
information.

NetBSD provides file system suspension
routines [17] for implementing suspending and
snapshotting a file system within the kernel.
These helper routines are designed to block any
callers trying to modify the file system after sus-
pension has begun and before all the cached infor-
mation has been flushed.Once all caches have
been flushed, the file system enters a suspended
state where all writes are blocked. Aftera snap-
shot has been taken, normal operation is resumed
and blocked writers are allowed to continue.Note
that using these synchronization routines is left up
to the file system, since generic routines cannot
know where the file system will do writes to
backing storage and where not.

puffsutilizes these routines much in the
same fashion as an in-kernel file systems would.
A fi le server can issue a suspend request to the
kernel module.This causes the kernel vfs module
to block all new access to the file system and flush
all cached data. The kernel uses four different
operations to notify the file server about the
progress in suspending the file system.First,
PUFFS_SUSPEND_START is inserted at the end
of the operations queue to signal that only flush-
ing operations will be coming from this point on.
Second, when all the caches have been flushed,
PUFFS_SUSPEND_SUSPENDED is issued to
signal that the kernel is now quiescent. Notethat
at this point the file system server must still take
care that it has completed all operations blocked
with the continuation functionality or running in
other threads and can only then proceed to take a
clean snapshot.Finally, the kernel issues an
explicit PUFFS_SUSPEND_RESUME, even
though it always follows the suspend notification.
In case of an error while attempting to suspend,



the kernel issuesPUFFS_SUSPEND_ERROR.
This also signals that the file system continues
normal operation from the next request onwards.

2.3. UserLevel L ibrary

The main purpose of the user library,
libpuffs, is to take care of all details irrelevant for
the file system implementation such as memory
management for kernel operation fetch buffers
and decoding the fetched operations.

The library offers essentially two modes of
operation. Thefile server can either give total
control to the library by callingpuffs_mainloop(),
or invoke the library only during points it chooses
to with the puffs_req family of functions. The
former is suited for file systems which handle all
operations without blocking while the latter is
meant for file systems which need to listen multi-
ple sources of input for asynchronous I/O pur-
poses. Currently, the library does not support a
programming model where the library issues a
separate worker thread to handle each request.

Interface

The currentpuffslibrary interface closely
resembles the in-kernel virtual file system inter-
face. Thefile server registers callbacks to the
library for operations and these callbacks get
executed when a request related to the callback
arrives from the kernel.

For file system operations, only three oper-
ations from vfsops are exported: sync, statvfs and
unmount. Thesync callback is meant to signal
the file server to synchronize its state to backing
storage, statvfs is meant to return statistics about
the file system, and unmount tells the file server
that the kernel has requested to unmount the file
system. Theuser server can still fail an unmount
request which was not issued withMNT_FORCE.
The kernel will respect this.

The operations dealing with file system
nodes are greater in number, but some operations
are missing when compared to the kernel vnode
interface. For example, the kernel uses
VOP_GETPAGES() and VOP_PUTPAGES() for
integration with the virtual memory subsystem2

and as a backend forVOP_READ() and

2 In NetBSD, file system read and write are com-
monly implemented asuiomove() on a kernel mem-
ory window. getpages is used to bring file data into
memory while putpages is used to flush it to stor-
age. Thisis how the file data is cached into the
page cache and written from it.

VOP_WRITE() on most file systems.However,
sincepuffsuserspace file servers do not integrate
into the kernel virtual memory subsystem, they do
not need VOP_GETPAGES() and VOP_PUT-
PA GES() and can simply make do with read and
write.

The parameters for the node operations fol-
low in-kernel vnode operations fairly closely.
Operations are given an opaque library call con-
text pointer, pcc, and the operation cookie,opc,
which the file server can use to find its internal
data structure.The meaning of the operation
cookie depends on each operation, but it is either
the directory which the operation affects or the
node itself if the operation is not a directory oper-
ation. For example, in the signature of rmdir, the
operation cookie is the cookie of the directory
from which the file is supposed to be removed
from, targ is the cookie of the node to be
removed and pcn describes the directory entry to
remove from the directory.

puffs_node_rmdir

int

node_rmdir(struct puffs_cc *pcc,

void *opc, void *targ,

const struct puffs_cn *pcn);

Full descriptions of each operation and involved
parameters can be found from thepuffsmanual
pages [18].

Filenames and Paths

The kernel vnode layer has only minimal
involvement with file names. Most importantly,
the vnode does not contain a pathname. This has
several benefits. First, it avoids confusion with
hardlinks where there are several pathnames refer-
ring to a single file.Second, it makes directory
rename a cheap operation, since the pathnames of
all nodes under the given directory do not need to
be modified. Only operations which require a
pathname component are passed one.Examples
are lookup, create and rmdir. The latter two
require the pathname component to know what is
the name of the directory entry they should mod-
ify.

However, most file system backends oper-
ate on paths and filenames.Examples include the
sftp backend used by psshfs and the puffs null
layer (discussed further in Chapter 3.1).To



facilitate easier implementation of these file sys-
tems, puffs provides the mount flag
PUFFS_FLAG_BUILDPATH to include full
pathnames3 in componentnames passed to inter-
face functions as well as store the full path in
struct puffs_node for use by the file
server. In addition to providing automatic support
for building pathnames,puffsalso provides hooks
for file systems to register their own routines for
pathname building in case a file system happens
to support an alternative pathname scheme.An
example of this is sysctlfs (Chapter 3.1), which
uses sysctl MIB names as the pathnames stored in
struct puffs_nodes. Thisalternate scheme
helps keep pathnames in the same place as other
file systems, but it requires some extra effort from
the file system: the file system must itself com-
plete the path in routines such as lookup after it
figures out its internal representation for the path-
name component; file systems based on "regular"
pathnames do not require this extra burden.

The advantage of having pathnames as an
optional feature provided by the framework is that
file servers implemented more in the style of clas-
sical file system do not need to concern them-
selves unnecessarily with the hassle of dealing
with pathnames, and yet backends which require
pathnames have then readily available. The
framework also handles directory renames and
modifies the pathnames of all child nodes of a
renamed directory.

Continuations

libpuffs operates purely as a single threaded
program. Thequestion between the preference
for an event loop or multiple threads is mostly an
open question and the conscious decision was to
in no way bias the implementation in such a fash-
ion that threading with all its uncertainties [19]
would be required to create a working file system
which does not block while waiting for operations
to complete.

The puffssolution is to provide a continua-
tion framework in the library. Multitasking with
continuations is like multitasking with coopera-
tive threads: the program must explicitly indicate
scheduling points.In a file system these schedul-
ing points are usually very clear and similar to the
kernel: a yield happens when the file system has
issued an I/O operation and starts waiting for the
result. Conversely, a continue is issued once the
result has been produced.This also bears

3 "full" as in "starting from the mount point"

resemblance to how the in-kernel file systems
operate (ltsleep()/wakeup() and the buffer cache
operationsbiowait()/biodone()) and should pro-
vide a much better standing point for running
unmodified kernel file systems underpuffs than
relying on thread scheduling.

puffs continuation operation

ev ent
loop

puffs
req_handle()

function 1

function 2

1.

2.

3.

4.
yield()

n+1.
continue()

n+2.

n+3.

n+4.

The programming interface is extremely
simple. Thelibrary provides an opaque cookie,
struct puffs_cc *pcc, with each interface
operation. Thefile system can put itself to sleep
by callingpuffs_cc_yield() with the cookie as the
argument and resume execution from the yield
point with puffs_cc_continue(). Beforeyielding,
the file system must of course store thepcc in its
internal data structures so that it knows where to
continue from once the correct outside event
arrives. Thisis further demonstrated in the above
figure and also Chapter 3.1, where thepuffs ssh
file system is discussed.

However, since the worker thread model is
useful for example in situations where the file sys-
tem must call third party code and does not have a
chance to influence scheduling points, support for
it will likely be added at some stage. Also, a file
system can be argued to be an "embarrassingly
parallel" application, where most operations,
depending slightly on the backend, can run com-
pletely independently of each other.



3. Resultsand Experiences

puffs has been imported to the NetBSD
source tree. It will be featured in the upcoming
NetBSD 4.0 release as an unsupported experi-
mental subsystem. Example file systems are
shipped in source form to make it clear no binary
compatibility is going to be provided for NetBSD
4.0. Fullsupport is planned for NetBSD 5.0.

3.1. ExampleFile Systems

psshfs - puffs sshfs

One desired feature commonly associated
with userspace file systems is sshfs.It gives the
ability to mount a remote file system through the
sftp ssh subprotocol [20]. The most widely
known sshfs implementation is FUSE sshfs.It
was originally available only for Linux, but is cur-
rently available also for FreeBSD and Mac OS X.
However, since all the other projects use (L)GPL
licensed original FUSE code, withpuffsNetBSD
is only operating system to provide a completely
BSD-licensed sshfs solution out-of-the-box.

While psshfs will be supported fully by the
ev entual release of NetBSD 5.0, NetBSD 4.0
ships with an experimental source-only simple
sshfs, ssshfs, found undershare/exam-
ples/puffs/ssshfs in the source tree.The
difference between ssshfs and psshfs is that ssshfs
was written as simple glue to OpenSSH code and
cannot utilize puffs continuations. psshfs was
written completely from scratch with multiple
outstanding operations in mind.

The operational logic of psshfs is based on
an event loop and puffs continuations.The loop
is the following:

1. readand process all requests from the
kernel. someof these may enqueue out-
going network traffic andyield().

2. readinput from the network, locate con-
tinuations waiting for input, issuecon-
tinue() for them. if a request blocks or
finishes, continue from the next protocol
unit received from the network. do this
until all outstanding network traffic has
been processed.

3. send traffic from the outgoing queue
until all traffic has been sent or the
socket buffer is full.

4. issueresponses to the kernel for all oper-
ations which were completed during this
cycle.

psshfs operational diagram

ev ent
loop

network
output

network
input

kernel

executing
operation

waiting op

waiting op

...

readwrite

continue

continue()

yield()

handle()

enqueue

dtfs

dtfs was used for the final development of
puffsbefore it was integrated into NetBSD. It is a
fully functional file system, meaning that it can do
all that e.g. ffs can. The author has run it on at
least /tmp, /usr/bin and /dev of his desktop sys-
tem. For ease of development dtfs uses memory
as the storage backend. However, it is possible to
extend the file system for permanent storage by
using a permanent storage backed memory alloca-
tor, such as one built on top ofmmap() with
MAP_FILE.

Development of dtfs was straightforward,
as it does what the exported kernel virtual file sys-
tem layer assumes a file system will do and it very
closely resembles the operational logic of in-ker-
nel file systems.

puffs nullfs

A nullfs [12] layer, also known in some
contexts as a loopback file system [21], is pro-
vided by libpuffs. A null or loopback layer maps
a directory hierarchy from one location to another.
The puffs nullfs is conceptually similar to the in-
kernel nullfs in that it acts as a simple
passthrough mechanism and always relays
unmodified calls the file system below it. How-
ev er, since it is implemented in the user library
instead of the kernel, it cannot simply push the
request to the next layer. Instead, it uses



pathnames and system calls to issue requests to
the new location.

The null layer in itself is not useful, espe-
cially since NetBSD already provides a fully
functional alternative in the kernel. However, it
can be used to implement various file systems
which modify filenames or file content with very
little effort for the backend. Anexample of a user
of the null layer is rot13fs, which is less than 200
lines of code and even of those almost half are
involved with setting up the file system and pars-
ing command line options. rot13fs translates
pathnames and file content to rot13 for any giv en
directory hierarchy in the file system.

sysctlfs

sysctlfs was an experiment in writing a file
system which provides the storage backend
through other means than a traditional file system
block device -like solution. It maps the sysctl
namespace as a file system and supports querying
(with e.g.cat) and changing the values of integer
and string type sysctl nodes.Nodes of type
"struct" are currently not supported.Trav ersing
the sysctl namespace is possible with standard
tools such asfind(1) or fts(3). sysctlfsdoes not
currently support dynamically adding or remov-
ing sysctl nodes.While support for the latter
would be possible, the former is problematic,
since the current file system interface exported to
processes in the form of system calls does not
provide any obvious way to specify all the infor-
mation, such as node type, required to create a
sysctl node.Non-obvious kludges such as abus-
ing mknod are possible, though.

Development was mostly done during a sin-
gle day. One of the features introduced to
puffsbecause of sysctlfs was the ability to instruct
the kernel vfs attachment to bypass cache for all
operations. Thisis useful here because re-query-
ing the information each time from sysctl(3) is
not expensive and we want changes in both direc-
tions to show up as quickly as possible in the
other namespace.

3.2. Experiences

The above clearly demonstrates that adapt-
ing a name hierarchy and associated data under
the file system interface is possible with relative
ease and in a very short time. It can be argued
that the development time was cut down greatly
due to the author’s intimate familiarity with the
system. Butit must also be pointed out that some

time included in the development time was spent
tracking down generic kernel bugs triggered by
the corner-case vfs uses of userspace file systems
and that some effort was used on framework
development. Currently, the development of sim-
ple file systems should take only hours or days for
someone with a reasonable familiarity in the
problem scope.

3.3. Stability

One of the obvious goals is to "bullet-
proof" the kernel from mistakes or malice in other
protection domains. The author has long since
developed file systems purely on his desktop
machine instead of inside an emulator or test
environment. Thishas resulted in a few crashes
in cases where the userspace file server has been
acting erroneously. There are no known cases of
puffs leading to a system crash when the file sys-
tem is operating properly and many people in fact
already run psshfs on their systems.Incidents
where a misbehaving file server manages to crash
the system are being fixed as they are discovered
and discoveries are further and further apart.

It is, however, still very easy to figure out a
way to maliciously crash the system, such as
introduce a loop.This is more of a convenience
problem than a security problem, though, since
mounting a file system still requires special privi-
leges not available to regular users.

Simply using the system long enough and
developing new file systems will iron out all fairly
easy-to-detect bugs. However, to meet the final
goal and accomplish complete certainty over the
stability and security of the system, formal meth-
ods more developed than cursory analysis and
careful C coding principles are required.

4. Performance

These performance measurements are
meant to give a rough estimate of the amount of
overhead that is caused bypuffs. Naturally a
userspace file system will always be slower than a
kernel file system, but the question is if the differ-
ence is acceptable.Nevertheless, it is important
to keep in mind that the implementation has not
yet reached a performance tuning stage and what
has been measured is code which was written to
work instead of be optimal.

The measurements were done on 2GHz
Pentium 4 laptop running NetBSD 4.99.9.Note
that the slowness of disk I/O is exacerbated on a
laptop.



The first measurement used was extracting
a tarball which contains the author’s kernel com-
pilation directory hierarchy from memory to the
target file system. The extracted size for this is
127MB and contains 2332 files.It will therefore
reasonably exercise both the data and name hier-
archy sides of a file system.

The files were extracted in two different
fashions: a single extract and two extractions run-
ning concurrently. For non-random access media
the latter will stress disk I/O even more.

Four different setups were measured in two
pairs: ffs and ffs through puffs nullfs; dtfs and
tmpfs4. Technically this grouping gives a rough
estimate about the overhead induced bypuffs. It
should be noted that the double test for the dtfs
case is not entirely fair, as the machine used for
testing only has 512MB of memory. The tree and
the associated page cache does not fit into main
memory twice.The tmpfs test does not have this
problem, as it does not store the tree in memory
and in the page cache.

tar extraction test

tmpfs (s) dtfs (s) diff (%)
single 3.203 11.398 256%
double 5.536 22.350 303%

ffs (s) ffs+null (s) diff (%)
single 47.677 53.826 12.9%
double 109.894 113.836 3.6%

Another type of test performed was the
reading of a large file. It was done both directly
off of ffs and through apuffsnull layer backed by
ffs and it was done both for an uncached file (uc)
and a file in the page cache (c).Additionally, the
null layer test was done so that the file was in the
page cache of the backing ffs mount but not the
cache of the null mount itself (bc).This means
that the read travelled from the kernel to the user
server, was mapped as a system call to ffs, and the
data was found from the ffs file system’s page
cache, so no disk I/O was necessary.

4.1. Analysisof Results

The results for extraction show that puffs is
clearly slower than an in-kernel file system.This
is expected. Butwhat is surprising is how little
overhead is added. tmpfs is a high optimized in-
kernel memory efficient file system.dtfs is a

4 tmpfs is NetBSD’s modern memory file system

read large file

system (s) wall (s) cpu (%)
ffs (uc) 0.2 11.05 1.8
null (uc) 0.6 11.01 5.9
ffs (c) 0.2 0.21 100.0
null (c) 0.2 0.44 61.6
null (bc) 0.6 1.99 31.7

userspace file system written for testing purposes
and not optimized at all. It usesmalloc() as a
storage backend and as a extreme detail it does
not do block level allocation; rather itrealloc()s
the entire storage for a file when it grows.

tmpfs contains 4828 lines of code while
dtfs is 1157 lines. The difference in code size is
over four times as many lines of code for tmpfs.
The difference in development effort probably
was probably even greater than this, although of
course there is no measurable evidence to back it
up. Development cycles for fatal errors for a ker-
nel file system are also considerably slower: even
though loadable modules can be used to reduce
the test cycle time to not require a complete
reboot, this will not help if the file system under
test crashes the kernel.

Even though tmpfs and dtfs are compared
here, it is important to keep in mind that they in
no way attempt to compete with each other.

A regular system call for a file operation
requires the user-kernel privilege boundary to be
crossed twice, while the puffs null scheme
requires it to be crossed at least six times: system
calls do not map 1:1 to vnode operations, but
rather they usually require several vnode opera-
tions per system call.However, as the results
show, the wall time penalty is very much hidden
under the I/O time imposed by the media.

The large file read test mostly measures
cache performance. The interaction ofpuffswith
the page cache is less efficient than ffs. Therea-
sons will be examined in the future. Also an
interesting result is the direct read from disk,
which was always slower than the read from disk
via nullfs. This result cannot yet be fully
explained. Onepossible explanation is that the
utility cat used for testing issuesread() system
calls using the file system blocksize as the buffer
size and this creates suboptimal interaction with
ffs. Whenreading the file through the null layer
the read-ahead code requests 64k (MAXPHYS)
chunks and these are converted back to system
calls at the null layer and ffs is accessed in 64k



chunks providing better interaction. This is, how-
ev er, just a hypothesis.

The "backend cached" test (bc) gives yet
another idea of overhead introduced bypuffs. It
shows that reading a file in backend cache is ten
times as expensive in terms of wall time as read-
ing it directly from an in-kernel file system’s
cache is. It shows a lot of time was spent waiting
instead of keeping the CPU busy. This will be
analyzed in-depth later.

5. Current and Future Work

Even thoughpuffs is fully functional and
included in the NetBSD source tree, work is far
from complete. This chapter outlines the current
and future work for reaching the ultimate goals of
the project.

File System Layering

File system layering or stacking [12,22] is a
technique which enables file system features to be
stacked on top of each other. All layers in the
stack have the ability to modify requests and the
results. Acommon example of such a file system
is the union file system [23], which layers the top
layer in front of the bottom layer in such a fashion
that all modifications are done on the top layer
and shadow the file system in the bottom layer.

While rot13fs is a clear example of a layer-
ing file system implemented on top of the puffs
null layer, libpuffs does not yet support any kind
of layering. Making layering support an integral,
easy-to-use, non-intrusive part of libpuffs a future
goal.

Impr oving Caching

As mentioned in Chapter 2, kernel caching
is already at a fairly good stage, although it could
still use minor improvements. However, library
support for generalized caching is missing.The
goal is to implement caching support on such a
level in l ibpuffs that most file systems could bene-
fit from the caching logic by just supplying infor-
mation about their backend’s modification activ-
ity.

This type of library caching is useful for
distributed file system where the file system back-
end can be modified through other routes than the
kernel alone. In cases where the file system is
accessed only through the local kernel, the file
server does not need to take care about caches:
the kernel will flush its caches correctly whenever
it is required, for example when a file is removed.

Another use is more aggressive read-ahead
than what the kernel issues.To giv e an example,
when reading a file in bulk over psshfs, the kernel
read-ahead code eventually starts issuing reads in
large blocks. However, an aggressive caching
subsystem could issue a read-ahead already for
the next large block to avoid latency at a block
boundary. It could also measure the backend
latency and bandwidth figures and optimize its
performance based on those.

Messaging Interface Description

Currently the message passing interface
between the kernel and libpuffs is described with
struct definitions in puffs_msgif.h. All
request encoding and decoding is handled manu-
ally in code both in the kernel and libpuffs. This
is both error-prone and requires manual labour in
a number of places.First of all, multiple loca-
tions must be modified both in the kernel and in
the library in case of an interface change.Sec-
ond, since all semantic information is lost when
the messages are written as C structures, it is diffi-
cult to facilitate a tool for automatically creating a
skeleton file system based on the properties of the
file system about to be written.

By representing the message passing inter-
face by a higher level description with, for exam-
ple XML, much of the code written manually can
be autogenerated. Also, this would lend to skele-
ton file system creation and to building limited
userspace file system testers based on the proper-
ties of the created file system skeletons.

Abolishing Vnode Locking

Currently the system holds vnode locks
while doing a call to the file server. The intent is
to release vnode locks and introduce locking to
the userspace file system framework. This will
open up several opportunities and will enable the
file system itself to decide what kind of locking it
requires; it knows its own requirements better
than the kernel.

Self-Healing and Self-Recovery

In case a file server hangs due to a pro-
gramming error, processes accessing the file sys-
tem will hang until the file server either starts
responding again or is killed. While the problem
can always be solved by killing the file server, it
requires the intervention from someone with the
correct credentials. Detecting malfunctioning
servers and automatically unmounting them



would introduce recovery and self-healing proper-
ties into the system. Remounting the file system
automatically afterwards would minimize a break
in service.

Compatibility

To lev erage the huge number of userspace
file systems already written and available, it
makes sense to be interface compatible with some
projects. Themost important of these is FUSE,
and a source code level compatibility layer to
puffsfor FUSE file systems, dubbedrefuse, is
being developed as a third party effort. As of
writing this, the compatibility layer is able run
simple FUSE file systems such as hellofs.
Progress here has been fast.

Another interesting compatibility project is
9P support.Even though, as stated earlier, sup-
porting it in the kernel would require a huge
undertaking, emulating it on top of thepuffs
library interface may prove to be a manageable
task. Currentlythough, the author knows of no
such effort.

Longer Term Goals

A large theme is improving the vfs layer by
identifying some of its properties through formal
techniques [24] and using these to show that the
puffskernel side correctly shields the kernel from
malicious and/or accidentally misbehaving user
file system servers. Italso allows for the develop-
ment of the vfs subsystem into a more flexible
and less fragile direction.

6. Conclusions

The Pass-to-Userspace Framework File
System (puffs), a standard component of the
NetBSD operating system, was presented in
depth, including the kernel and user level archi-
tecture. puffswas shown to be capable of sup-
porting multiple different kinds of file systems:

• psshfs - the puffs sshfs file system capa-
ble of mounting a remote location
through the ssh sftp protocol

• dtfs - an in-memory general-purpose file
system

• sysctlfs - a file system mapping the
sysctl tree to a file system hierarchy

• nullfs - a file system providing any
directory hierarchy in the system in
another location

The ease of development of these file sys-
tems was observed to be good.Similarly, the
development test cycle time and time for error
recovery from crashes was observed to be very
close to nil. The comparison is the typical times
measured in minutes for kernel file systems.
Additionally, puffs does not require any special
tools or setup to develop, as is typical for kernel
development. Rather, standard issue user pro-
gram debuggers such asgdb can be attached to
the file system and the live file system can be
debugged on the same host as it is being devel-
oped on.

Performance of file systems built on top of
puffswas shown to be acceptable.In cases where
the storage backend has any significant I/O cost,
i.e. practically anything but in-memory file sys-
tems, the wall time cost forpuffs overhead was
shown to be shadowed by the I/O cost.As
expected,puffswas measured to introduce some
additional CPU cost.

Finally, sincepuffsis entirely BSD licensed
code, it provides a significant advantage to some
parties over (L)GPL licensed competitors.

Acknowledgements

Thepuffsproject was initially started under
Google Summer of Code 2005 mentored by Bill
Studenmund. Somelater funding was provided
by the Ulla Tuominen Foundation.

Professor Heikki Saikkonen helped review
and finalize this paper.

References

1. Andrew S. Tanenbaum, Jorrit N. Herder,
and Herbert Bos, “Can We Make Operating
Systems Reliable and Secure?,” IEEE Com-
puter,vol. 39, no. 5, pp. 44-51.

2. Brian N. Bershad,The Increasing Irrele-
vance of IPC Performance for Microkernel-
Based Operating Systems,pp. 205-211,
Workshop on Micro-Kernels and Other
Kernel Architectures (1992).

3. S.R. Kleiman,Vnodes: An Architecture for
Multiple File System Types in Sun UNIX,
pp. 238-247, Summer Usenix Conference,
Atlanta, GA (1986).

4. Assar Westerlund and Johan Danielsson,
Arla---a free AFS client,pp. 149-152,
Usenix Freenix Track (1998).



5. KristapsDzonsons,nnpfs File-systems: an
Introduction,Proceedings of the 5th Euro-
pean BSD Conference (November 2006).

6. Miklos Szeredi,Filesystem in USErspace,
http://fuse.sourceforge.net/ (referenced
February 1st 2007).

7. Csaba Henk, Fuse for FreeBSD,
http://fuse4bsd.creo.hu/(referenced Febru-
ary 1st 2007).

8. Amit Singh, A FUSE-Compliant File Sys-
tem Implementation Mechanism for Mac
OS X, http://code.google.com/p/macfuse/
(referenced February 4th, 2007).

9. Bell Labs, “Plan 9 File Protocol, 9P,” Plan
9 Manual.

10. Eric Van Hensbergen and Ron Minnich,
Grave Robbers from Outer Space: Using
9P2000 Under Linux,pp. 83--94, USENIX
2005 Annual Technical Conference,
FREENIX Track (2005).

11. "The Clustering and Userland VFS trans-
port protocol - summary"(May 2006).
DragonFly BSD Kernel mailing list thread
title.

12. Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quarterman,
Design and Implementation of the 4.4BSD
Operating System,Addison-Wesley (1996).

13. ChuckSilvers, UBC: An Efficient Unified
I/O and Memory Caching Subsystem for
NetBSD, pp. 285-290, Usenix Freenix
Track (2000).

14. buffercache(9) -- buffer cache interfaces
(October 2006). NetBSD Kernel Devel-
oper’s Manual.

15. MarshallKirk McKusick, Samuel J. Leffler,
and Michael J. Karels, “Name Cacheing,”
Measuring and Improving the Performance
of Berkeley UNIX (April 1991).

16. David C. Steere, James J. Kistler, and M.
Satyanarayanan,Efficient User-Level File
Cache Management on the Sun Vnode
Interface, pp. 325-332, Summer Usenix
Conference (1990).

17. Juergen Hannken-Illjes, fstrans(9) -- file
system suspension helper subsystem(Jan-
uary 2007). NetBSD Kernel Developer’s
Manual.

18. puffs -- Pass-to-Userspace Framework File
System development interface(February
2007). NetBSD Library Functions Manual.

19. Edward A. Lee, “The Problem with
Threads,” UCB/EECS-2006-1, EECS
Department, University of California,
Berkeley (2006).

20. J. Galbraith, T. Ylönen, and S. Lehtinen,
SSH File Transfer Protocol draft 03,Inter-
net-Draft (October 16, 2002).

21. SunMicrosystems, “lofs - loopback virtual
file system,” SunOS Manual Pages, Chapter
7FS(April 1996).

22. David S. H. Rosenthal,Evolving the Vnode
Interface, pp. 107-118, Summer Usenix
Conference (1990).

23. J.Pendry and M. McKusick,Union Mounts
in 4.4BSD-Lite, pp. 25-33, New Orleans
Usenix Conference (January 1995).

24. Junfeng Yang, Paul Twohey, Dawson
Engler, and Madanlal Musuvathi, Using
Model Checking to Find Serious File Sys-
tem Errors,pp. 273-288, OSDI (2004).


