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ABSTRACT

Fault tolerant and secure operating

systems are a worthwhile do&nown

method for accomplishing fault tolerance and security is isolafldris means running
separate operating system services in separate protection domains soytltantiod
interfere with each otheend can communicate only via well-defined messaging-inter
faces. Isolatiorand message passing brings inheresgrteead when compared to ser
vices doing communication by accessing each others memory dirgotlgddress this,

the ultimate goal wuld be to be able to run the kernel subsystems in separate domains
during deeelopment and testing, but Y& a dop-in aailability to make them run in ker-

nel mode for performance critical application scenarios. Still tathagt operating sys-
tems are written purely with C and some assembly using the monolithic kernel approach,
where all operating system code runs within a single protection dovaingle error in

ary subsystem can bring the whole operating system down.

This work presentpuffs- the Pass-to-Userspace Framek File System - shipped
with the NetBSD Operating System. It is a framek for implementing file systems out-
side of the krnel in a separate protection domain in a user process. The implementation
is discussed in-depth for a kernel programmer audiefbe. benefits in implementation
simplicity and increased security and fault tolerance are argued to outweigh the measured
overhead when compared with a classic erdel file system.A concrete result of the
work is a completely BSD-licensed sshfs implementation.

Keywords: userspace file systems, robust and secure operating systems, message-passing

subsystems, BSD-licensed sshfs

1. Introduction

"Microkernels have won"is a famous
quote from the Tanenbaum erlalds debate from
the early 9Gs. Microkernel operating systems are
associated with running the operating system ser
vices, such as file systems and raking proto-
cols, in separate domains, and component com-
munication via message passing through channels
instead of direct memory references. This is
known as isolation and pvades an increase in
system security and reliability in case of a misbe-
having component [1]; at worst the component
can corrupt only itself instead of the entire sys-
tem. Havever, most contemporary operating sys-
tems still run all services inside a single

protection domain with the popular gament
being an advantage in performandeven if we
were to disrgard research which states that the
performance difference is irretant [2], we might
be willing to male a tadeof for a more robst
system.

A separate argument is that we do not need
to see issues only in black-and-whiten operat-
ing systems mre can be monolithic with the
associated tradeoffs,ub offer the interfaces to
implement some services in separate domains.
An HTTP server or an NFS servcan be imple-
mented either as part of the monolithic kernel or
as a separate user procesgnghough thg both
have their "correct” locations of implementation.



There is obiously room for both a micranel
and a monolithic kernel approach within the same
operating system. Another relat argument is
the use of inline assembly in an operating system:
almost @eryone agrees that it is wrong, yet not
using it males the system less performant.
Clearly, performance is notverything.

This work presentspuffs the Rass-To-
Userspace Framerk File System for NetBSD.
puffs provides an interface similar to theetkel
virtual file system interface, vfs [3], to a user
process. puffs attaches itself to the kernel vfs
layer It passes requests it reees from the vfs
interface in the &rnel to userspace, waits for a
result and preides the caller with the result.
Applications and the rest of the kernel outside of
the vfs module cannot distinguish a file system
implemented on top opuffsfrom a file system
implemented purely in the eknel. Fr the
userspace implementation a libratippuffs, is
provided. libpufs not only preides a program-
ming interbce to implement the file system on,
but also includes covenience routines commonly
required for implementing file systems.

puffsis ervisioned to be a step in miog
towards a more fieible NetBSD operating sys-
tem. ltclearly adds a micraknel touch with the
associated implications for isolation and usb
ness, but also provides an environment in which
programming a file system is much easier than
compared to the same task done in tleené&l.
And instead of just creating a userspace file sys-
tem frameavork, the lessons learned from doing so
will be turned upside down and the whole system
will also be impreed to better facilitate creating
functionality such apuffs The latter part, ha-
eva, is aut of the scope of this paper.

Related Work

There are seeral other packagesvalable
for building file systems in userspace. When this
project was bgun in the summer of 2005, the
only option aailable for BSD was nnpfs, which is
supplied as part of the Arla [4] AFS implementa-
tion. Arlais a portable implementation of AFS.
It relies on a small kernel module, nnpfs, which
attaches to the host operating systekernel and
provides an intedce for the actual userspace AFS
implementation to talk toA huge drawback as
that at the time it only supported caching on a file
level. Since,it has deeloped block leel caching
and some documentation orvhio write file sys-
tems on top of it [5].

The best known userspace file system
framevork is FUSE, Filesystem in USErspace
[6]. It supports already hundreds of file systems
written aginst it. On a technical Vel, puffsis
fairly similar to FUSE, since tlyeboth eport
similar virtual file system interfaces to userspace.
However, the are diferences already currently in,
for example, pathname handling and concuienc
control. Thedifferences are expected to gras
the puffsproject reaches future goal&€ven so,
providing a source compatible interface with
FUSE is an important goal tovi’age all the
existing file systems (see Chapter 5). In the sum-
mer of 2005 FUSE as aailable only for Linux,
but has since been ported to FreeBSD in the
Fuse4BSD [7] projectA derivate project of the
FreeBSD porting effort, MacFUSE [8], recently
added support for Mac OS XA downside from
the BSD point-of-viev is that userspace library
for FUSE is aailable only under LGPL and that
file systems written on top of it & a endency
of being GPL-licensed.

Apart from framgvorks merely &porting
the Unix-style vfs/vnode interface to userspace
for file system implementation, there are systems
which completely redesign the whole concept.
Plan 9 is Bell Labs’ operating system where the
adage "eerything is a file" really holds: there are
no special system calls for serviceslikere are
on Unix-style operating systems, where, for
example, opening a network connection requires a
special type of system call. Plan 9 was also
designed to be a distributed operating system, so
all the file operations are encoded in suchay w
that a remote machine can decode them. As a
roughly equaent counterpart to the Unix virtual
file system, Plan 9 provides the 9P [9] transport
protocol, which is used by clients to communicate
with file seners. 9Phas been adapted to for
example Linux [10], it the greater problem with
9P is that it is relately different from the
(Net)BSD vfs interface and it mek some
assumptions about file systems in general not
valid on Unix [10]. Therefore, it &s not directly
considered for the userspace library interface.

DragonFly BSD has started putting forth
effort in creating a VFS transport protocol, which,
like 9P, would be suitable for distrilied emiron-
ments in which the server carig on a diferent
network node than the client [11]. It is also
usable for implementing a file system in
userspace, but is a huge undertaking and restruc-
tures much of the kernel file system code.



The main reason for writing a framerk
from scratch is that the ultimate goal of therk
is not to deelop a userspace file system frame-
work, but rather to impne the flexibility and
robustness of the operating system itsalfhile
taking a more flexible route such as that of 9P
may eventually prose o be he right thing to do, it
is easier to ta& n snall steps in reaching a goal
and keep the system functional all the tintur-
rently, especially the kernel side gfuffsis very
lightweight and tries to be a good kernel citizen in
not modifying the rest of thecknel. Theultimate
goal is to gradually change this in creating a more
secure and reliable operating system.

Paper Contents

Chapter 2 discusses the architecture and
implementation ofpuffson an in-depth technical
level. Chapter3 presents a f& file systems ilt
on top ofpuffs It discusses experiences inveke
oping them. Chapter 4 presents performance

measurements and analyses the measured results.

Chapter 5 containsavk being done currently and
outlines some future visions for \ddopment.
Finally, Chapter 6 provides conclusions.

2. puffsArchitecture

puffsis made up of four separate compo-
nents (see figure):

1. VFSattachment, including virtual mem-
ory subsystem and page cache gnae
tion. Thispart interbices with the érnel
and malks sure that the kernel correct-
ness is enforced. (Chapter 2.1.)

2. Messaginginterface, which transports
requests to and from the file system
server (Chapter 2.2.)

3. A user led adaption library libpuffs,
which handles the details of therkel
communication and pwides supporting
routines. (Chapte2.3.)

4. Thefile system implementations them-
selves. (Chapter 3)

2.1. VMrtual File System Attachment

Creating a ne file system in the kernel is
done by attaching it to thesknel’s virtual file sys-
tem (vfs) [3] interhce. Aslong as the file system
abides by the vfs layer'all protocols, it is free to
provide the kind of file hierarghand data content
it wishes.
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The vfs layer is made up of twseparate
interfaces: the actual virtual file system insed
and the vnode inteate. Theformer deals with
calls involving file system leel operations, such
as mount and unmount, while the lattewals
involves an operation on a file; the vnode oF vir
tual node is an abstract, i.e. virtual, representation
of afile.

Vnodes are treated as reference counted
objects by the &rnel. Oncethe reference count
for a vnode drops to zero, it is nedl to the freel-
ist and said to enter anactive state. Havever,
the file system in-memory data structures may
still hold weak pointers to the vnode at this point
and some vnode operations may prompt the file
system to attempt to rescue the vnode from the
freelist. Oncea wnode is irrgersibly freed and
regycled for other use, it is said to beclaimed
At this point a file system mustvaidate all
pointers to the vnode and in-memory file system
specific data structures relating to the vnode are
also freed [12].

A very central routine forwery file system
is thelookuproutine in the vnode inteate. This
routine takes in a pathname component and pro-
duces a vnode. It must return the same vnode for
the duration of the vnode’lifetime, or else the
kernel could access the same file through multiple
different interfaces destroying consistgrguar-
antees. puffs uses cookie alues to map node
information between thecknel and the file seev.
The file server selects a cookiealwe and



communicates it to the kernel upon node
creatior. The kernel checks that it was not
handed a duplicate, creates awnenode and
stores the cookiealue in the priate portion of

the newly created vnodeThis cookie value is
passed to the file server for all subsequent opera-
tions on the kernel vnodeA cookie — vnode
mapping is also stored in a hash list so khekup

can later determine if it should create awne
vnode or if it should return the an existing one.

The cookie shared by the file servand
kernel is of typevoid *. While this is not
enough to ceer al file system nodes on a 32bit
architecture, it should be recalled that the cookie
value is used only to locate an in-memory file sys-
tem data structure and is valid only from node
creation to the reclaim operation and that this
cycle is controlled by the étnel. Most file
seners will simply use the address of the in-mem-
ory data structure as the cookedue and do map-
ping from the cookie to the file senvnode struc-
ture with a simple pointer typecadtven further
this address will be that of a generic libjsuf
node,struct puffs_node, and the file sys-
tem’s private data structure can be found from the
private data pointer irst ruct puffs_node.
This is not required, but as we will later see when
discussing the user librarthe generic node pro-
vides some additional ceenience features.

For interfacing between the kernel and the
file sener, the vfs layer acts as a translator
between the in-kernel representation for vfs
parameters and a serialized representation for the
file sener. This part is discussed further in Chap-
ter 2.2. Additionally, the vnode portion of the vfs
attachment implements the file system side of the
vnhode locking protocol.

The vfs layer also acts as a semantic police
between the kernel and the user fs sendt
malkes sure that the file server does not retuyn an
thing which the rest of theeknel cannot handle
and would result in incorrect operation, data-cor
ruption or a crash.

Short circuiting Non-implemented Operations

All user file system servers do not imple-
ment all of the possible operations; open and
close are xaamples of operations commonly not
implemented at all on the vnodevée Therefore,

1 A node can be created by the following opera-
tions: lookup create mknod mkdir and symlink
The first one just creates the node, while the final
four create the backing file and the node.

unless mounted with the debug flag
PUFFS_KFLAG ALLOPS, operations unsup-
ported by the file seer will be short circuited in
the lkernel. © avoid littering operations with a
check for a supported operation, theadgtf vnode
operations gctor, puffs_vnodeop_,efines some
operations to be implemented pyffs_chekop().
This performs a table lookup to check if the eper
ation is supportedlf the operation is supported,
the routine mags aVOCALL () for the operation
from the \ector puffs_msgop_po communicate
with the file serer. Otherwise it returns immedi-
ately To make this approach feasible, the script
generating the vnode interfaceasv modified to
produce symbolic names for the operations, e.g.
VOP_READDI R_DESCCFFSET, where thg
were previously generated only as numerd- v
ues. Itshould be noted that all operations cannot
be directed topuffs_chekop(), since e.g. the
reclaim operation must do in-kernel boeklping
regardless of if the file server supports the opera-
tion in question. These operations use the macro
EXI STSOP() to check if thg need to contact the
file server or is in-kernel maintenance enough.

puffs vnode op vector

{&vop_I| ookup_desc,
{&vop_creat e_desc,
{ & op_nknod_desc,
{ & op_open_desc,

puf fs_I ookup 1},
puf fs_checkop 1},
puf fs_checkop },
puf fs_checkop 1},

{&vop_reclai mdesc, puffs_reclaim},
{&vop_l ock_desc, puffs_lock },
{&vop_unl ock_desc, puffs_unlock },

Kernel Caching

Caching relatiely frequently required
information in the krnel helps reduce roundtrips
to the fs serer, Snce operations can be short-cir
cuited already inside theeknel and cached data
provided to the caller Caching is normal beka
ior even for in-kernel file systems, as disk 1/O is
very slov compared to memory access.

The file system cache is divided into three
separate caches: the page cache, tiffierbcache
and the name cache. The page cache [13] is a fea-
ture of the virtual memory subsystem and caches
file contents. This\aids reading the contents of
frequently used files from the backing storage.
The huffer cache in turn [12,14] operates on disk
blocks and is meant for file system metadatae



name cache [12,15] is used to cache the results of with the flagFSYNC WAI T. These operations

the lookup from pathname to file system node to
avad the slav path of the frequent
VOP_LOOKUR) operation.

To avoid doing e&pensve reads from the
file server each time data is accesgadfsuti-
lizes the page cache dkany aher file system
would. Additionally, it provides the file semr
with an interface to either flush orvalidate the
page cache contents for a certain file for\aemi
page range. Thesadilities can be used by file
seners which use backends with disuted
access. Sinceuffs does not operate on a block
device in the lernel, it does not use thaufter
cache at all.However, caching metadata is aaln-
tageous [16]een if it is not backed up by a block
device. Supporffor caching metadata in theik
nel is planned in the near futureFinally,
puffsuses the name cache ay ather file system
would, but additionally provides the file serv
with a method to welidate the name cache either
on a per-file basis, per-directory basis or for the
entire file system.

2.2. UserKernel Messaging Interface

Messaging between the kernel and file
sener is done through a charactewide. Each
file server openg dev/ puffs at mount time
and the communication between the file serv
and lernel is done through thevdee. Theonly
exception is mounting the file system, for which
the initial stage is done by the file server by call-
ing the mount) system call. Immediately when
the device descriptor is closed the file system is
forcibly unmounted in the kernel, as the file
sener is considered dead. This is an easy way to
unmount a misbehaving file system, although nor
mally umount should be preferred to malaure
that all caches are flushed.

VES and Vnode Operations

All vfs and vnode operations are initiated in
the kernel, usually as the result of a process doing
a ystem call imolving a file in the file system.
Most operations folw a query-response format.
This means that when a kernel interface is called,
the operation is serialized and queued for trans-
port to the file semr. The calling kernel conke
is then put to sleep until a responsevagir the
file system is forcibly unmounted)However,
some operations do not require a response from
the file serer. Examples of such operations are
the vnode reclaim operation and fsync not called

are enqueued on the transport queue after which
the caller of the operation continueseauting.
puffscalls these non-blocking type operations
Fire-And-Forget (FAF) operations.

Before messages can be enqueuedy the
must be transformed to a format suitable for
transport to userspace. The current solution is to
represent parameters of the operation as structure
members. Somemembers can be assigned
directly, but others such astruct conpo-
nent name must be translated because of point-
ers and other members the userland does et ha
direct access toCurrently all this modifying is
done manually for each operation, but it is hoped
that this could bewmided in the future with an
operation description language.

Transport

As mentioned abe, the format of mes-
sages exchanged between thernkl and file
sener is defined by structureskEvery request
structure is  subclassed fromstruct
puf f s_r eq, which in C means thatery struc-
ture describing a message contains the aforemen-
tioned structure as its first membdtis member
describes the operation enough so that it can be
transported and decoded.

puffs_req members
struct puffs_req {
uint64_t preq_id;
union u {
struct {
ui nt 8_t opcl ass;
uint8_t optype;
voi d *cooki e;
} out;
struct {
int rv;
voi d *puf ;
}oin
}ou
size_t preq_buflen;
uint8_t preq_buf[0]
__aligned( ALI GNBYTES+1) ;
b

The messaging is designed so that each
request can be handled by in-place modification
of the huffer. For most operations the request



structures contain fields which should be filled,
but the operationgead and readdir may return
much more data so it is not sensible to include
this space in the structur€onversely, write does

not need to return all the data passed to userspace.

puffs_vnreq_read/ write
struct puffs_vnreq_readwite {
struct puffs_req pvn_pr;
struct puffs_cred pvnr_cred;
of f _t pvnr_of f set;
size_t pvnr_resid;
i nt pvnr _i of | ag;
ui nt 8_t pvnr _data[ 0] ;
H

When querying for requests from therk
nel, the file server provides a pointer to a flat
buffer along with the size of theuffer. The ler-
nel places requests in thisiffer either until the
next operation wuld not fit in the bffer or the
queue of waiting operations is emptyo facili-
tate in-place modification for operations which
require more space in the response than in the
query (read, readdir), the kernel Yea a @p
which can fit the maximal response.

This solution, hwever, is suboptimal. It
was designed before the continuation framoek
(see Chapter 2.3) and does notetato account
that the whole flat udffer is not @ailable every
time a query is made. The currently implemented
workaround is tanemcpy) the requests from the
buffer into storage allocated separately for the
processing of each operatioo fix this, the
query operation will eentually be modified to use
a <t of buffers instead of one big buffer.

Responses from the user to the kernel use a
scatter-gther type bffering scheme. Thisatili-
tates both operations which return less or more
data than what as passed to them by theriel
and also operations which do not require a
response at allTo mnimize cross-boundary cgp
setup costs, the ioctl argument structure contains
the address information of the first respon$he
puf f s_req in the first responseulffer contains
the information for the second responadfér
and so forth. This ay only one copyin is needed
per uffer instead of one for the header describing
how much to cog from where and one for the
buffer itself.

Snapshots

puffssupports building a snapshotting file
system. Whathis means is that it supports the
necessary functionality to suspend the file system
temporarily into a state in which the file system
sener code can taka siapshot of the file sys-
tem’s gate. Dening all access to the file system
for the duration of taking the snapshot is easy:
the file system seer needs only to stop process-
ing requests from theeknel. Thisis because,
unlike in the kernel, all requests come through a
single inter&ce: the request queuklowever, the
problem is flushing all cached data from thes-k
nel so that the file system is in a consistent state
and disallowing n& requests from entering the
request queue while theetnel is flushing the
information.

NetBSD preides file system suspension
routines [17] for implementing suspending and
snapshotting a file system within theerkel.
These helper routines are designed to blogk an
callers trying to modify the file system after sus-
pension has lgein and before all the cached infor
mation has been flushednce all caches ke
been flushed, the file system enters a suspended
state where all writes are blak Aftera sap-
shot has been taken, normal operation is resumed
and blocled writers are allowed to continublote
that using these synchronization routines is left up
to the file system, since generic routines cannot
know where the file system will do writes to
backing storage and where not.

puffsutilizes these routines much in the
same fashion as an in-kernel file systenusila.
A file server can issue a suspend request to the
kernel module. This causes the kernel vfs module
to block all nev access to the file system and flush
all cached data. Theeknel uses four dérent
operations to notify the file server about the
progress in suspending the file systeffirst,
PUFFS_SUSPEND_ START is inserted at the end
of the operations queue to signal that only flush-
ing operations will be coming from this point on.
Second, when all the cachesvdaren flushed,
PUFFS_SUSPEND_SUSPENDED is issued to
signal that the érnel is nav quiescent. Notéhat
at this point the file system servmust still tak
care that it has completed all operations béack
with the continuation functionality or running in
other threads and can only then proceed te tak
clean snapshot.Finally, the kernel issues an
explicit  PUFFS_SUSPEND RESUME, even
though it alvays follows the suspend notification.
In case of an error while attempting to suspend,



the lernel issuesPUFFS SUSPEND ERROR.
This also signals that the file system continues
normal operation from the next request onwards.

2.3. UserLevd Library

The main purpose of the user library
libpuffs, is to tale care of all details irreleant for
the file system implementation such as memory
management for kernel operation fetchfférs
and decoding the fetched operations.

The library ofers essentially tw modes of
operation. Thefile server can either ¢ wtal
control to the library by callinguffs_mainloof),
or invoke the library only during points it chooses
to with the puffs_reqfamily of functions. The
former is suited for file systems which handle all
operations without blocking while the latter is
meant for file systems which need to listen multi-
ple sources of input for asynchronous 1/O -pur
poses. Currentythe library does not support a
programming model where the library issues a
separate worker thread to handle each request.

Interface

The currentpuffslibrary interface closely
resembles the in-kernel virtual file system inter
face. Thefile server rgisters callbacks to the
library for operations and these callbacks get
executed when a request related to the callback
arrives from the kernel.

For file system operations, only three eper
ations from vfsops are exported: sync, statvfs and
unmount. Thesync callback is meant to signal
the file server to synchronize its state to backing
storage, statvfs is meant to return statistics about
the file system, and unmount tells the file serv
that the lernel has requested to unmount the file
system. Thauser server can stilafl an unmount
request which was not issued wNINT_FORCE.

The kernel will respect this.

The operations dealing with file system
nodes are greater in numpbut some operations
are missing when compared to therdel vnhode
interface. Br example, the kernel uses
VOP_GETRAGES) and VOP_PUTRAGESY) for
integration with the virtual memory subsystem
and as a backend foWOP_REAL) and

2 In NetBSD, file system read and write are com-
monly implemented asiomové) on a kernel mem-
ory window. getpages is used to bring file data into
memory while putpages is used to flush it to-stor
age. Thisis hov the file data is cached into the
page cache and written from it.

VOP_WRITHE) on most file systemsHowever,

sincepuffsuserspace file servers do not grage
into the kernel virtual memory subsystem ytide

not need VOP_GETRAGEY) and VOP_PUT-
PACES) and can simply makdo with read and
write.

The parameters for the node operations fol-
low in-kernel vnode operations fairly closely
Operations are gén an @gaque library call con-
text pointer pcc, and the operation cookiepc,
which the file server can use to find its internal
data structure.The meaning of the operation
cookie depends on each operation, but it is either
the directory which the operation affects or the
node itself if the operation is not a directory eper
ation. For example, in the signature of rmdthe
operation cookie is the cookie of the directory
from which the file is supposed to be resmmb
from, targ is the cookie of the node to be
removed and pcn describes the directory entry to
remove from the directory.

puffs_node_rmdir

i nt

node_rndi r(struct puffs_cc *pcc,
void *opc, void *targ,
const struct puffs_cn *pcn);

Full descriptions of each operation andadred
parameters can be found from tpaffsmanual
pages [18].

Filenames and Paths

The kernel vnode layer has only minimal
involvement with file names. Most importantly
the vnode does not contain a pathname. This has
several benefits. First, it avoids confusion with
hardlinks where there areveeal pathnames refer
ring to a single file.Second, it makes directory
rename a cheap operation, since the pathnames of
all nodes under thegin directory do not need to
be modified. Only operations which require a
pathname component are passed daeamples
are lookup, create and rmdifThe latter tvo
require the pathname component townghat is
the name of the directory entry thehould mod-
ify.

However, most file system backends oper
ate on paths and filenamesxamples include the
sftp backend used by psshfs and thefspufill
layer (discussed further in Chapter 3.1Jo



facilitate easier implementation of these file sys-
tems, puffs provides the mount flag
PUFFS_FLAG BUI LDPATH to include full
pathnamesin componentnames passed to inter
face functions as well as store the full path in
struct puffs_node for use by the file
server In addition to praviding automatic support
for building pathnameguffsalso provides hooks
for file systems to register theiova routines for
pathname wbilding in case a file system happens
to support an alternag pathname schemeAn
example of this is sysctlfs (Chapter 3.1), which
uses sysctl MIB names as the pathnames stored in
struct puffs_nodes. Thisalternate scheme
helps keep pathnames in the same place as other
file systems, but it requires somsdra effort from

the file system: the file system must itself com-
plete the path in routines such as lookup after it
figures out its internal representation for the path-
name component; file systems based ogula™"
pathnames do not require this extra burden.

The advantage of having pathnames as an
optional feature praded by the fram@ork is that
file seners implemented more in the style of clas-
sical file system do not need to concern them-
seles unnecessarily with the hassle of dealing
with pathnames, and yet backends which require
pathnames h& then readily walable. The
framavork also handles directory renames and
modifies the pathnames of all child nodes of a
renamed directory.

Continuations

libpuffs operates purely as a single threaded
program. Thequestion between the preference
for an eent loop or multiple threads is mostly an
open question and the conscious decisi@s Yo
in no way bias the implementation in suctaah-
ion that threading with all its uncertainties [19]
would be required to create avking file system
which does not block while waiting for operations
to complete.

The puffssolution is to preide a continua-
tion framavork in the library Multitasking with
continuations is lik multitasking with coopera-
tive threads: the program must explicitly indicate
scheduling pointsin a file system these schedul-
ing points are usuallyery clear and similar to the
kernel: a yield happens when the file system has
issued an 1/O operation and startgitimg for the
result. Comersely a mntinue is issued once the
result has been producedThis also bears

3"full" as in "starting from the mount point"

resemblance to ko the in-kernel file systems
operate I¢sleed)/wakeuif) and the bffer cache
operationsbiowait()/biodon€)) and should pro-
vide a much better standing point for running
unmodified lernel file systems undguuffs than
relying on thread scheduling.

puffs continuation operation

n+4.

puffs
reg_handl€)
n+1.
continug) n+3. 2.
. 4,
function 1 yield)

n+2. 3.

function 2

The programming interface isxteemely
simple. Thelibrary provides an opaque cookie,
struct puffs_cc *pcc, with each interdice
operation. Thdile system can put itself to sleep
by calling puffs_cc_yiel@) with the cookie as the
argument and resumexecution from the yield
point with puffs_cc_continug. Beforeyielding,
the file system must of course store ploe in its
internal data structures so that it knows where to
continue from once the correct outsideerg
arrives. Thisis further demonstrated in the alo
figure and also Chapter 3.1, where théfs ssh
file system is discussed.

However, snce the verker thread model is
useful for example in situations where the file sys-
tem must call third party code and does nateha
chance to influence scheduling points, support for
it will likely be added at some stage. Also, a file
system can be gued to be an "embarrassingly
parallel" application, where most operations,
depending slightly on the bashkd, can run com-
pletely independently of each other.



3. Resultsand Experiences

puffs has been imported to the NetBSD
source tree. It will be featured in the upcoming
NetBSD 4.0 release as an unsupportgfes-
mental subsystem. Example file systems are
shipped in source form to malkt dear no binary
compatibility is going to be prided for NetBSD
4.0. Fullsupport is planned for NetBSD 5.0.

3.1. ExampleFile Systems

psshfs - puffs sshfs

One desired feature commonly associated
with userspace file systems is sshifsgives the
ability to mount a remote file system through the
sftp ssh subprotocol [20]. The most widely
known sshfs implementation is FUSE sshil.
was aiginally available only for Linux, it is cur
rently available also for FreeBSD and Mac OS X.
However, dnce all the other projects use (L)GPL
licensed original FUSE code, wittuffs NetBSD
is only operating system to pide a completely
BSD-licensed sshfs solution out-of-the-box.

While psshfs will be supported fully by the
evantual release of NetBSD 5.0, NetBSD 4.0
ships with an experimental source-only simple
sshfs, ssshfs, found undeshare/exam
pl es/ puf f s/ ssshf s in the source treeThe

psshfs operational diagram

kernel

handl€)

continug)

Pl

“<  continue
N
N

LN
waiting op

executing

operation watting op

yield()

dtfs

dtfs was used for the final @dopment of
puffsbefore it vas integrated into NetBSD. Itis a
fully functional file system, meaning that it can do
all that e.g. ffs can. The author has run it on at

difference between ssshfs and psshfs is that ssshfs!east/tmp /usr/bin and /dev of his desktop sys-

was written as simple glue to OpenSSH code and
cannot utilize puffs continuations. psshfsaswv
written completely from scratch with multiple
outstanding operations in mind.

The operational logic of psshfs is based on
an event loop and puffs continuationslhe loop
is the following:

1. readand process all requests from the
kernel. someof these may enqueue out-
going network traffic anglield().

2. readinput from the network, locate con-
tinuations waiting for input, issueon-
tinug() for them. if a request blocks or
finishes, continue from the next protocol
unit receved from the netwrk. dothis
until all outstanding network traffic has
been processed.

3. sendtraffic from the outgoing queue
until all traffic has been sent or the
socket buffer is full.

4. issuaesponses to thesknel for all oper
ations which were completed during this
cycle.

tem. For ease of delopment dtfs uses memory
as the storage baekd. Havever, it is possible to
extend the file system for permanent storage by
using a permanent storage bedgknemory alloca-
tor, such as one built on top ahmayg) with
MAP_FI LE.

Development of dtfs vas straightfonard,
as it does what thexported kernel virtual file sys-
tem layer assumes a file system will do aneiyv
closely resembles the operational logic of ér-k
nel file systems.

puffs nullfs

A nullfs [12] layer dso knawvn in some
contxts as a loopback file system [21], is pro-
vided by libpufs. A null or loopback layer maps
a drectory hierarcl from one location to another
The puffs nullfs is conceptually similar to the in-
kernel nullfs in that it acts as a simple
passthrough mechanism and wals relays
unmodified calls the file system belat. How-
eva, dnce it is implemented in the user library
instead of the kernel, it cannot simply push the
request to the next layerinstead, it uses



pathnames and system calls to issue requests to
the nev location.

The null layer in itself is not useful, espe-
cially since NetBSD already provides a fully
functional alternatie in the lernel. Havever, it
can be used to implement various file systems
which modify filenames or file content witteny
little effort for the backnd. Anexample of a user
of the null layer is rot13fs, which is less than 200
lines of code andven of those almost half are
involved with setting up the file system and pars-
ing command line options. rotl3fs translates
pathnames and file content to rot13 foy given
directory hierarc in the file system.

sysctlfs

sysctlfs wvas an experiment in writing a file
system which provides the storage beuk
through other means than a traditional file system
block device -lile slution. It maps the sysctl
namespace as a file system and supports querying
(with e.g.caf) and changing the values of igr
and string type sysctl nodesNodes of type
"struct" are currently not supportediravesing
the sysctl hamespace is possible with standard
tools such adind(1) or fts(3). sysctlfsdoes not
currently support dynamically adding or rewo
ing sysctl nodes.While support for the latter
would be possible, the former is problematic,
since the current file system interface exported to
processes in the form of system calls does not
provide ary obvious way to specify all the infer
mation, such as node type, required to create a
sysctl node.Non-obvious kludges such as ad
ing mknod are possible, though.

Development was mostly done during a sin-
gle day One of the features introduced to
puffsbecause of sysctlfsag the ability to instruct
the kernel vfs attachment to bypass cache for all
operations. Thiss useful here because re-query-
ing the information each time from sysctl(3) is
not expensive and we want changes in both direc-
tions to shw up as gickly as possible in the
other namespace.

3.2. Experiences

The abee dearly demonstrates that adapt-
ing a name hierarghand associated data under
the file system interface is possible with refati
ease and in a very short time. It can bgued
that the dedlopment time was cut down greatly
due to the authas’intimate familiarity with the
system. Buit must also be pointed out that some

time included in the delopment time was spent
tracking down generic kernel bugs triggered by
the cornercase vfs uses of userspace file systems
and that some effort was used on framom
development. Currentlythe deelopment of sim-

ple file systems should talonly hours or days for
someone with a reasonablaniliarity in the
problem scope.

3.3. Stability

One of the obious goals is to 'Wlet-
proof" the lernel from mistakes or malice in other
protection domains. The author has long since
developed file systems purely on his desktop
machine instead of inside an emulator or test
ervironment. Thishas resulted in a Ve crashes
in cases where the userspace file eehas been
acting erroneouslyThere are no known cases of
puffsleading to a system crash when the file sys-
tem is operating properly and nyapeople in &ct
already run psshfs on their systemisicidents
where a misbelving file server manages to crash
the system are being fixed as\tlaee discwered
and discweeries are further and further apart.

It is, havever, ill very easy to figure out a
way to maliciously crash the system, such as
introduce a loop.This is more of a camnience
problem than a security problem, though, since
mounting a file system still requires special/pri
leges not @ailable to regular users.

Simply using the system long enough and
developing naw file systems will iron out allafirly
easy-to-detect ugs. Havever, to meet the final
goal and accomplish complete certaintyerothe
stability and security of the system, formal meth-
ods more deloped than cursory analysis and
careful C coding principles are required.

4. Performance

These performance measurements are
meant to gie a opugh estimate of the amount of
overhead that is caused bguffs Naturally a
userspace file system willvedys be slower than a
kernel file system, but the question is if thefelif
ence is acceptablelNevertheless, it is important
to keep in mind that the implementation has not
yet reached a performance tuning stage and what
has been measured is code which was written to
work instead of be optimal.

The measurements were done on 2GHz
Pentium 4 laptop running NetBSD 4.99.Blote
that the slowness of disk 1/O isacerbated on a
laptop.



The first measurement used wasr&cting
a tarball which contains the authsrkernel com-
pilation directory hierarch from memory to the
target file system. The extracted size for this is
127MB and contains 2332 filedt will therefore
reasonably xercise both the data and name hier
archy sides of a file system.

The files were extracted in dwdifferent
fashions: a singlextract and tw extractions run-
ning concurrently For non-random access media
the latter will stress disk I/Oven more.

Four different setups were measured i tw
pairs: ffs and ffs through pisf nullfs; dtfs and
tmpfs’. Technically this grouping ges a ough
estimate about theverhead induced bpuffs It
should be noted that the double test for the dtfs
case is not entirelyafr, as he machine used for
testing only has 512MB of memoryhe tree and
the associated page cache does not fit into main
memory twice. The tmpfs test does notvetis
problem, as it does not store the tree in memory
and in the page cache.

tar extraction test

read large file

tmpfs (s) difs (s)| dff(%)
single 3.203 11.398 256%
double 5.536 22.350 303%
ffs(s) | fistnull (s) | dif (%)
single 47.677 53.826 12.9%
double 109.894 113.836 3.6%

Another type of test performed was the
reading of a large file. It as done both directly
off of ffs and through @uffsnull layer backd by
ffs and it was done both for an uncached file (uc)
and a file in the page cache (@dditionally, the
null layer test was done so that the filasan the
page cache of the backing ffs mount Imot the
cache of the null mount itself (bc)fhis means
that the read treelled from the kernel to the user
serverwas mapped as a system call to ffs, and the
data was found from the ffs file systerpage
cache, so no disk I/O was necessary.

4.1. Analysisof Results

The results forxraction shav that puffsis
clearly slower than an in-kernel file systeifhis
is expected. Butwhat is surprising is he little
overhead is added. tmpfs is a high optimized in-
kernel memory efficient file systemdtfs is a

4 tmpfs is NetBSDS modern memory file system

system (s)| wall (s) | cpu (%)
ffs (uc) 0.2 11.05 1.8
null (uc) 0.6 11.01 5.9
ffs () 0.2 0.21 100.0
null (c) 0.2 0.44 61.6
null (bc) 0.6 1.99 31.7

userspace file system written for testing purposes
and not optimized at all. It usesallod) as a
storage backend and as a extreme detail it does
not do block lge allocation; rather itrealloc()s

the entire storage for a file when it grows.

tmpfs contains 4828 lines of code while
dtfs is 1157 lines. The difference in code size is
ove four times as manlines of code for tmpfs.
The difference in delopment effort probably
was probably een greater than this, although of
course there is no measurablédence to back it
up. Development cycles for fatal errors for ark
nel file system are also considerably slowgene
though loadable modules can be used to reduce
the test gcle time to not require a complete
reboot, this will not help if the file system under
test crashes the kernel.

Even though tmpfs and dtfs are compared
here, it is important to keep in mind thatyhe
no way attempt to compete with each other.

A regqular system call for a file operation
requires the usekernel prvilege boundary to be
crossed twice, while the puffs null scheme
requires it to be crossed at least six times: system
calls do not map 1:1 to vnode operationsf b
rather thg usually require seeral vnode opera-
tions per system callHowever, & the results
shaw, the wall time penalty is very much hidden
under the 1/O time imposed by the media.

The large file read test mostly measures
cache performance. The interactionpafffswith
the page cache is less efficient théem fTherea-
sons will be examined in the future. Also an
interesting result is the direct read from disk,
which was alays slower than the read from disk
via nullfs. This result cannot yet be fully
explained. Onepossible explanation is that the
utility cat used for testing issuegad() system
calls using the file system blocksize as thédy
size and this creates suboptimal interaction with
ffs. Whenreading the file through the null layer
the read-ahead code requests 68RXPHYS)
chunks and these are eerted back to system
calls at the null layer and ffs is accessed in 64k



chunks providing better interaction. This isyho
eve, just a hypothesis.

The "backend cached" test (bcief yet
another idea of verhead introduced bypuffs It
shaws that reading a file in bagekd cache is ten
times as gpensve in terms of wall time as read-
ing it directly from an in-kernel file systegY’
cache is. It shows a lot of time was speaiting
instead of keping the CPU usy This will be
analyzed in-depth later.

5. Current and Future Work

Even thoughpuffsis fully functional and
included in the NetBSD source tree, work & f
from complete. This chapter outlines the current
and future werk for reaching the ultimate goals of
the project.

File System Layering

File system layering or stacking [12,22] is a
technique which enables file system features to be
stacled on top of each otherAll layers in the
stack hae te ability to modify requests and the
results. Acommon example of such a file system
is the union file system [23], which layers the top
layer in front of the bottom layer in suchashion
that all modifications are done on the top layer
and shadw the file system in the bottom layer.

While rot13fs is a clear example of a layer
ing file system implemented on top of the fpuf
null layer, libpuffs does not yet support yakind
of layering. Making layering support an irgeal,
easy-to-use, non-intrug part of libpufs a future
goal.

Impr oving Caching

As mentioned in Chapter 2, kernel caching
is already at a fairly good stage, although it could
still use minor impreements. Havever, library
support for generalized caching is missinthe
goal is to implement caching support on such a
level in libpuffs that most file systems could bene-
fit from the caching logic by just supplying infor
mation about their baekds nodification acti-
ity.

This type of library caching is useful for
distributed file system where the file system back-
end can be modified through other routes than the
kernel alone. In cases where the file system is
accessed only through the locariel, the file
sener does not need to &lare about caches:
the kernel will flush its caches correctly wheee
it is required, for gample when a file is remed.

Another use is more aggressiread-ahead
than what the kernel issue3o gve an example,
when reading a file in bulkver psshfs, the &rnel
read-ahead codeventually starts issuing reads in
large blocks. However, an aggressie @ching
subsystem could issue a read-ahead already for
the next large block tovaid lateny at a Bock
boundary It could also measure the bacid
latenyy and bandwidth figures and optimize its
performance based on those.

Messaging Interface Description

Currently the message passing irdeef
between the kernel and libpuffs is described with
struct definitions inpuffs_nsgif.h. All
request encoding and decoding is handled manu-
ally in code both in thedenel and libpdk. This
is both error-prone and requires manual labour in
a rumber of places.First of all, multiple loca-
tions must be modified both in therkel and in
the library in case of an interface chandgec-
ond, since all semantic information is lost when
the messages are written as C structures, itfis dif
cult to facilitate a tool for automatically creating a
skeleton file system based on the properties of the
file system about to be written.

By representing the message passing-nter
face by a higher leel description with, for gam-
ple XML, much of the code written manually can
be autogenerated. Also, thiould lend to skle-
ton file system creation and tailding limited
userspace file system testers based on the proper
ties of the created file system skeletons.

Abolishing Vnode Locking

Currently the system holds vnode locks
while doing a call to the file sesv The intent is
to release vnode locks and introduce locking to
the userspace file system framoek. This will
open up seral opportunities and will enable the
file system itself to decide what kind of locking it
requires; it knows its wn requirements better
than the kernel.

Self-Healing and Self-Receery

In case a file seer hangs due to a pro-
gramming errgrprocesses accessing the file sys-
tem will hang until the file seer either starts
responding agjn or is killed. While the problem
can alvays be solved by killing the file sesw it
requires the intervention from someone with the
correct credentials. Detecting malfunctioning
seners and automatically unmounting them



would introduce receery and self-healing proper
ties into the system. Remounting the file system
automatically afterwards would minimize a break
in service.

Compatibility

To leveage the huge number of userspace
file systems already written andvadable, it
makes sense to be interface compatible with some
projects. Themost important of these is FUSE,
and a source codevid compatibility layer to
puffsfor FUSE file systems, dubbe@fuse is
being deeloped as a third party feft. As of
writing this, the compatibility layer is able run
simple FUSE file systems such as hellofs.
Progress here has been fast.

Another interesting compatibility project is
9P support.Even though, as stated earlieup-
porting it in the kernel would require a huge
undertaking, emulating it on top of theuffs
library interface may pre 0 be a nanageable
task. Currentlythough, the author knows of no
such effort.

Longer Term Goals

A large theme is improving the vfs layer by
identifying some of its properties through formal
techniques [24] and using these towhbat the
puffskernel side correctly shields thetel from
malicious and/or accidentally misbefreg user
file system semrs. Italso allows for the delop-
ment of the vfs subsystem into a morexitie
and less fragile direction.

6. Conclusions

The Pass-to-Userspace Framek File
System fuff§, a standard component of the
NetBSD operating system, was presented in
depth, including the denel and user el archi-
tecture. puffswas hown to be capable of sup-
porting multiple different kinds of file systems:

» psshfs - the pii$ sshfs file system capa-
ble of mounting a remote location
through the ssh sftp protocol

« dtfs - an in-memory general-purpose file
system

« sysctifs - a file system mapping the
sysctl tree to a file system hierarchy

 nullfs - a file system providing &n
directory hierarch in the system in
another location

The ease of delopment of these file sys-
tems was observed to be goo&imilarly, the
development test ycle time and time for error
recovery from crashes as observed to beewy
close to nil. The comparison is the typical times
measured in minutes foreknel file systems.
Additionally, puffs does not require gnspecial
tools or setup to delop, as is typical for &rnel
development. Rathergandard issue user pro-
gram debuggers such gslb can be attached to
the file system and thevé file system can be
delugged on the same host as it is beingede
oped on.

Performance of file systemsiili on top of
puffswas shown to be acceptabldn cases where
the storage backend hasyasignificant 1/0 cost,
i.e. practically anything u in-memory file sys-
tems, the wall time cost fqouffs overhead vas
shavn to be shadeed by the 1/O cost.As
expected,puffswas measured to introduce some
additional CPU cost.

Finally, snce puffsis entirely BSD licensed
code, it preides a significant advantage to some
parties @er (L)GPL licensed competitors.
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