puffs - Pass-to-Userspace
Framework File System

AsiaBSDCon 2007
Tokyo, Japan

Antti Kantee
pooka@s. hut . fi

Helsinki University of Technology



Talk structure

what Is puffs?

why do we care?

puffs architecture overview

kernel and transport mechanism
userspace components

example file systems
measured performance figures
compatibility

future work

conclusions



Introduction to puffs

Pass-to-Userspace Framework File System

» passes file system interface to userspace
and provides a framework

 kernel interface: VFS
» userspace Interface: almost VFS

 userspace library provides convenience
functions such as continuation support

* NetBSD-current (4.0 will have some support)
Why the name puffs?
 puff pastry, increases in volume when baked



Why userspace file systems

» fault tolerance and isolation: one error
doesn’t bring the system down

 easier to program
» easler to test
 easler to debug, single-step and do

iteration

» do we really need all the error-prone
namespace management for example for

procfs in the
» libraries and

Kernel?

pre-existing software: most of

the time written against POSIX instead of the

BSD kernel



puffs architecture

. vis module mar- file server (4)
shalls request libpuffs (3)
. requests are trans-  ------------- j‘, _Idevipuffs (2)__
ported to userspace .o "® rEoduleu)
. library decodes and _____—— UL
diSpatCheS requeSt user ‘ syscall
application

. file server handles
request

result passed back



VES module

attach puffs to kernel like all file systems

Interpret incoming requests, convert to
transport-suitable format and queue request
to file server

police duty making sure file server plays nice

vhode -> file server node -> vnode handled
with cookies, file server selects cookie value
when It creates a node

short-circuit unimplemented operations
integrate to UBC
snapshot support



Messaging format

nothing to write a slide about .... yet

a bunch of structs with manual accessors, no
real constructors or destructors or anything

of the sort

all structs "subclassed" from the transport
frame header struct puffs reqg

used within the kernel and libpuffs, actual file
systems get a decoded interface



Transport: / dev/ puffs

device opened once per file system instance

file server driven operation

 get: fetch a request, move it to queue
waiting for responses

 put: results for a request fetched by
getop, not done for all requests

» flush: flush or purge kernel cache
« suspend: file system snapshots

can transport multiple requests per single
getop or putop kernel call

tries to minimize amount of copys required



User library

 provides basic programming interface for the
library, plus a bunch of convenience routines

» file system implementation is a bunch of
callbacks, much like with vfs

» file server should call puf f s_nount (),
execute necessary operations and either
pass control the puffs or fetch and put
requests by itself using library functions

* some backends require constant fondling
such as with TCP sucket buffers

« other backends always execute
everything "Instantly"



file system interface

almost vfs, not quite

missing some operations such as r evoke()
and get / put pages|()

all operations getstruct puffs cc * as
an opaque library context

vnode operations additionally receive cookie
value: either parent directory cookie or node
cookie, depending on operation

rest of the parameters mimic their kernel
counterparts, e.qg. kauth _cred t ->
puffs cred =



pathnames

kernel file systems operate on the concept

that |

ookup provides a node and then forget

about pathnames except for operations
which operate in a directory

for some user file servers, full pathnames are

usefu
puffs

, €.7. sshfs

orovides them as an optional

component under the same interface

also possible to provide own path-generating
routines, such as for "rot13fs", or even
something completely different like sysctl
MIB names



continuations

all file system operations do not finish
iInstantly, usually no point in waiting
synchronously

threads could be used .... but they suck
support continuations in libpuffs

like threads, but explicitly scheduled with
puffs yield()and puffs _conti nue()

file systems need to implement some hook
from request response to continue

need to drive file system backend 1/O and
puffs requests from an event loop

 there’s only one thread, remember



continuations continued

» automatically
unwind stack to
"top" of library
n+4.T JZ 1.
puffs
req_handle()

 jump right back in
with local variables
and entire stack like

you left it el % J}
. library code was 0| Mlu?
taxing to write, but function 1 y cjdo
programming IS |
eaSy n+2.[ﬁ J7 3.
’ yleld() t Continue() function 2

"Just work"




psshfs

second version of
sshfs written on
top of puffs

uses
continuations

multiple
outstanding
operations

faster than nfs In
some conditions

V.

kernel

network
output
rite

network
input
read

N .
~ continue
N

operation

waiting op

executing L— |

waiting op




other file systems

difs - delectable test file system

« or detrempe file system, if you want to
stay true to puffs

sysctlfs - map sysctl namespace to a file
system

nullfs - operation like kernel nullfs.
implemented In libpuffs with just a little
frontend file system. nice for measurements

rotl3fs - present names and data of a
mounted directory hierarchy as rot13



Development experiences

» some-other-namespace to file system can
usually be written in about a day’s worth of
work

* this assumes a little familiarity with the
system

 safe(ish ;-) to do file system development on
desktop machine

» debugging nice and easy



Experimental results 1

« test extraction of kernel compilation directory
(127MB, > 2000 files)

tmpfs (S) dtfs (s) | diff (%0)
single 3.203 11.398 | 256%
double 5.536 22.350 | 303%

ffs (s) | fis+null (s) | diff (%)
single 47.677 53.826 | 12.9%
double | 109.894 113.836 | 3.6%




Experimental results 2

 read of large file, uc : uncached, c : cached,
bc . backend cached

system (s) | wall (s) | cpu (%)
ffs (uc) 0.2 11.05 1.8
null (uc) 0.6 11.01 5.9
ffs (C) 0.2 0.21 100.0
null (c) 0.2 0.44 61.6
null (bc) 0.6 1.99 31.7




FUSE compatibility: refuse

Is it pronounced REfuse, reFUSE or REFuse?
who knows ;-)

 FUSE Interface is widely spread

» supporting it is definitely a good thing, but
don’t want to be limited by it

 solution: write compat layer on top of libpuffs
 agc Initiated refuse project
» Xtraeme added support to pkgsrc

* NetBSD can now run e.g. ntfs-3g installed
from pkgsrc




Future work

Improve layering support in userspace

make transport interface more generic

write message specification in non-C

support distributed vfs routing in userspace
« and 9P while you're (I'm) at it

(semi-)formally verify that vfs module does
not expose anything dangerous to userspace

make It clear what is expected of file
systems, provide tools for it

 currently it’s only clear if you've written a
couple of file systems



More work

« adapt kernel portion to NetBSD’s new
locking primitives

* create tools for easy creating of file system
namespaces

* makes away with need to have
homegrown struct array hacks in every
fictional file system

« make Iinterfaces more kernel-like (or make
kernel more interface-like)

« compile and run same code for kernel or
userspace

 simplification vs. unification



Wrapup

userspace components provide isolation,
fault tolerance and development comfort

performance is the tradeoff, but usually
hidden by 1/O cost

» and these days, most of the time you
simply Just Don’t Care

current version of puffs works, but interfaces
are not yet promised to be stable

possible to run file systems taking advantage
of the native interface or FUSE file systems
using puffs + refuse



Interested? Get involved!

If you’re running NetBSD-current, add
VMKPUFFS=yes to/ et c/ nk. conf , try out
nount psshf s and pkgsrc stuff, file bug
reports

write new file systems (but do be prepared to
change them slightly until the interface
stabilizes)

propose ideas for new features

hype it so that people finally get rid of silly
microkernel antipathies ;-)



	Talk structure
	Introduction to puffs
	Why userspace file systems
	puffs architecture
	VFS module
	Messaging format
	Transport: 	exttt {/dev/puffs}
	User library
	file system interface
	pathnames
	continuations
	continuations continued
	psshfs
	other file systems
	Development experiences
	Experimental results 1
	Experimental results 2
	FUSE compatibility: refuse
	Future work
	More work
	Wrapup
	Interested? Get involved!

