
Nsswitch development: nss-modules and libc separation
and caching daemon extensions

Michael Bushkov

bushman@freebsd.org

Southern Federal University,
Rostov-on-Don, Russia

Abstract

This paper describes the extensions to the FreeBSD nsswitch subsystem, that should be committed to the source tree in
the nearest future and the issues that had to be solved to make them. These changes are:

1) The separation of the libc and nsswitch modules, which makes libc code much lighter and nsswitch subsystem
more dynamic. It also allows proper use of the nsdispatch(3) calls from the userland.

2) New features, that were added to the caching daemon (full “perform-actual-lookups” option support,
“precache” and “check-files” option). They make it much more usable and similar in functionality to
Linux/Solaris nscd, while having its own unique features.

Preface

The work, described below, was made during and
after the Google Summer Of Code 2006, which I
was lucky to participate in, working for the
FreeBSD community. It is not yet committed to the
-CURRENT, but I hope it to be finally reviewed and
committed in the nearest future.

Nss-modules and libc separation

The idea of nss-modules and libc separation is quite
straight-forward: we should make several dynamic
libraries (nss_files, nss_dns, nss_compat, nss_nis)
and move appropriate code from libc to them.
Appropriate code is the functions which were
specified as the sources during nsdispatch(3)
calls.

Several issues had to be solved to separate nss-
modules from the libc.

Issue 1. Common functionality

Common functionality was the almost ubiquitous
problem of all nss-modules. As all nsswitch sources
for the particular database usually reside in 1 file
(getpwent.c, for example), their functions usually
use some common routines (pw_scan, for example).
To move such modules from the libc with minimal

changes, common functions were moved to the
internal libnssutil static library. This library is
compiled with ${PICFLAG} to allow linking with
shared libraries - i.e. nsswitch modules. It contains
quite general routines (like copy_htent() and
copy_netent()) and is used from nss_files, nss_nis,
nss_dns, and nss_compat. It can also be useful if
some new nss-module is introduced.

Getipnodeby**(3) functions had a lot of common
functionality issues. It turned out that the simplest
way to solve them is to implement
getipnodeby**(3) functions not through
nsdispatch(3) calls but through gethostby**(3) calls.
Such modifications were made and tested for
compatibility with current implementations
(nsswitch regression tests, that are described below
were used to ensure that the behavior of these
functions didn't change).

Issue 2. Threading and private libc includes
issues

All nss-modules use thread specific storage (thread
local storage) by using either
NSS_TLS_HANDLING or
NETDB_THREAD_ALLOC macros from nss_tls.h
and netdb_private.h respectively. Both of these files
are libc-internal. And they both require all pthread-
related calls to be hidden with namespace.h/un-
namespace.h includes. To allow nss-modules to be

moved out of the libc with minimal changes,
<pthread.h> and <pthread_np.h> includes are
enclosed with "namespace.h" and "un-namespace.h"
in their source code. Path to libc/include is added to
the standard include path for each module to allow
"nss_tls.h", "netdb_private.h" and other libc-private
files inclusion.

Such an approach allows to move out the modules
from the libc to separate libraries with minimal
changes to their sources, which is very useful, until
this work is finally committed. The drawback of
such decision is the dependency of the nss-modules
code on the libc code. This dependency can surely
be broken after the modules are separated in –
CURRENT. For example, if all modules use only
NSS_TLS_HANDLING macro to handle thread
local storage data, then it will make netdb_private.h
unneeded. The nss_tls.h can be modified not to use
hidden versions of pthread calls and placed in the
libnssutil folder (it would have to be left in libc also
- as it is used not only from nss-modules but also
from the libc itself). Other libc-private includes can
also be easily eliminated from the modules’ sources.

Issue 3. Statically linked binaries

Statically linked binaries can't call dlopen(3). But
when all nss-modules are moved out from the libc,
dlopen(3) is the only way to use them. To solve this
issue, not only the dynamic versions of the nss-
modules, but also their static versions, should be
built. Libc's Makefile was modified to link statically
built nss-modules in (please see Appendix A for
details).

Nsdispatch.c has the nss_load_builtin_modules()
function, which loads the statically linked modules
into the libc at program startup. In the shared libc.so
each modules' entry function is now replaced with
an empty stub. In static libc.a each modules' real
entry functions are used. nsdispatch.c was slightly
modified to correctly distinguish real module entry
functions from a stub.

The approach, that was used to link-in nss-modules
into the static libc.a is quite flexible - new module
can be added to the list of linked-in modules without
any problems as long as it can be built as a static
library (plus some 1-line changes would need to be
made to the libc). The possible extension of this
approach is to:

1. Make the list of the linked-in modules extendable
via macro definitions, that can be defined during the
buildworld.
2. Add an option to the nss-modules ports to build
statically linked libraries along with shared ones.

With these changes made, the user will be able to
link-in any prebuilt nss-module into the libc during
the buildworld process. This would allow him to use
this module’s functionality with any of the statically
linked binaries (/rescue is the most important
example, probably) without any restrictions

Benefits of separating nss-modules from the libc

1. The code of both libc and nsswitch modules
became much cleaner. The common functionality
was placed into the libnssutil library and the number
of interdependencies between libc and nsswitch
modules sources was reduced to minimum. The
code of the particular nsswitch module is not spread
over several libc files, but is located in one library.

2. The described above ability to add the particular
module support to the libc without any pain is now
present.

3. There is now an ability to actually use
nsdispatch(3) routine not only from the libc. The use
of nsdispatch(3) was limited because of the number
of the opaque pointers (in the dtab structure, that
describes the list of nss-modules and their entry-
points), that were needed to be passed in order for
nsdispatch(3) to use libc built-in modules. When all
nss-modules are standalone, the need in these
pointers became obsolete, so nsdispatch(3) can be
used and will properly work not only in the libc, but
also in any other place. That gives an ability to
properly support "perform-actual-lookups" option
for all nsswitch databases in the caching daemon
(please see the details below).

Nsswitch Regression Tests

The basic idea of the regression tests is to check that
the expected functions behavior doesn’t change after
their sources modification. The idea of the
regression testing for nsswitch is that the nsswitch
query results should be generally the same after the
system or nss-modules upgrade (if we don’t change
the databases, of course). The test procedure itself is
very simple: we make a set of nsswitch queries
(get**ent(3), get**byname(3) and get**byid(3)

calls) and store their results in a file. When the test
is done next time, it does the same queries in the
same order and checks that their results are equal to
the stored ones.

So, the testing is done in 2 stages.

First stage is the snapshot creation stage. We run the
test and it builds a snapshot file of the nsswitch
queries results. It also checks these results for
correctness – numerical values must be in the
correct range, (char *) strings that should not be
NULL must not be NULL. For the resolver
functions we can check that the ip address length
corresponds to ip address type and, if the address
was mapped from ipv4 to ipv6, that it was mapped
correctly.

During stage 2 we use the already created snapshot
to perform the same set of queries and then compare
their results to the ones in the snapshot. We also
check all results for correctness on this stage.

Such kind of testing can be used to test any existent
nsswitch module. For example, we can take
FreeBSD6-STABLE, run the first stage of the test,
then upgrade to CURRENT and run the second
stage of the test. The test will show all the
compatibility issues between versions of nsswitch-
dependent functions.

All nsswitch regression tests are C programs, that
use the same testutil.h file, which carries most of the
common logic (mostly in the form of macro
definitions). The command line arguments are the
same for almost all tests:
 -d - enables debug output, which helps to debug
the test itself and to get more information in case of
test failure
 -n - runs test for the get**byname(3) function
 -e - runs the test for the get**ent(3) functions
 -g, -u, -p – run the test for getgrgid(3), getpwuid(3)
or getservbyport(3) functions accordingly
 -s <file> - causes the snapshot file to be created or,
if it already exists, to be used to check the equality
of the nsswitch queries results

The described regression tests were used while work
on libc and nsswitch modules separation was being
done. Their output was used to ensure that the
behavior of the system with all modules built into
the libc is equal to its behavior with all modules
separated. They’ve especially helped during the

getipnodeby**(3) functions reimplementation
through the gethostby**(3) calls.

Regression tests can also be used to ensure that the
caching daemon works correctly. To do that, we
make a snapshot, when the caching for the particular
nsswitch database is turned off, then we turn it on,
run the stage 1 again (without rewriting the snapshot
file), so that all necessary data are cached and then
run stage 2 test with the snapshot file. If any error
occurs during the caching process or caching
daemon’s marshalling/demarshalling process, it will
most probably be mentioned in the test output.

Cached performance analysis

Cached gives tremendous and easily explainable
performance boost for network-related nsswitch
queries – LDAP is the best example, probably.
That’s why comparing the performance of the, for
example, “passwd” nsswitch database queries to
LDAP with and without caching is not of much
interest. Much more interestingly is to compare
caching daemon speed with the speed of the fastest
nsswitch source: “files”.

To do the comparison, we’ve used the “passwd” and
“services” databases, which are quite different in
their current implementation: “passwd” relies on
BDB and “services” – on plain files.

We modified the sources of the getent utility so that
it began to write getrusage(2) information to the
stdout after each nsswitch query. Then, for each test
we ran getent multiple times, forcing it to do 2
queries at 1 run. Only the speed of second query
from each run was taken into account, because the
first query always involves much overhead for
reading nsswitch.conf file, loading nsswitch
modules, caching the results, when caching was
enabled and so on. The results were collected in the
files and then processed by python script. For each
type of testing (we used getpwnam(3) for “passwd”
testing and getservbyname(3) for “services” testing),
total of 10000 requests were made, 5000 of them
were taken into account. For “services” database,
half of requests were made for the data in the top
part of the /etc/services file and half – for the data in
the bottom of this file, because the time of the
getservbyname(3) call is proportional to position of
the needed data in /etc/services.

Here are the numbers (in microseconds), evaluated
in different caching conditions:

Caching turned off
“passwd” nsswitch database
Total time: 44880.00
Average time: 44.88
Median time: 47.00
Standard deviation: 13.39
Minimal time: 27.00
Maximum time: 157.00
“services” nsswitch database
Total time: 5529766.00
Average time: 552.98
Median time: 1069.00
Standard deviation: 492.91
Minimal time: 30.00
Maximum time: 1209.000

Caching turned on (caching daemon is in single
threaded mode):
“passwd” nsswitch database
Total time: 102717.00
Average time: 102.72
Median time: 100.00
Standard deviation: 21.58
Minimal time: 71.00
Maximum time: 197.00
“services” nsswitch database
Total time: 1010379.00
Average time: 101.04
Median time: 169.00
Standard deviation: 22.31
Minimal time: 71.00
Maximum time: 214.00

Caching turned on (caching daemon is in
multithreaded mode – 8 threads):
“passwd” nsswitch database
Total time: 124147.00
Average time: 124.15
Median time: 150.00
Standard deviation: 27.58
Minimal time: 78.00
Maximum time: 232.000
“services” nsswitch database
Total time: 1213242.00
Average time: 121.32
Median time: 137.00
Standard deviation: 28.25
Minimal time: 80.00
Maximum time: 257.00

While showing good results (about 5,5 times faster)
with caching enabled for "services" database, this
test shows the ugly truth - it's nearly impossible to
beat BDB query time with caching daemon’s query
time. This fact makes using cached for local sources
very questionable (not impossible, though). BDB is
obviously the fastest solution, but caching daemon
caches all plain files information in the uniform
way, it can perform checks on local files to update
cache if they are changed (with all precautions of
not flushing the old data if something is wrong with
the updated file) and do precaching on startup
(please see below), it is more lightweight solution,
that does not require BDB in tree. But, once again,
if the speed is the main and only concern, then BDB
is the choice.

Actually there are 3 areas, where cached’s speed can
be improved:

1) Socket I/O
2) Multithreading
3) Lack of performance-improvement features

Socket IO optimizations appeared very hard to be
done without major changes of the cached's
architecture. And, most of the socket I/O-related
calls have normal execution time, which however is
much longer than BDB-related calls time. Because
of these 2 reasons, no significant changes were
made to the socket I/O part.

Multithreading issues doesn’t seem (according to
the numbers above) to affect the caching daemon’s
speed much.

Because of the described reasons, Item 3 was
considered to be the most perspective way to
improve cached’s performance in certain cases., so
the precaching feature was added to the caching
daemon (please see below).

Cached extensions

"perform-actual-lookups" option full support

The nss-modules and libc separation allowed adding
full support for the "perform-actual-lookups" option
to the FreeBSD caching daemon. With this option
turned on, cached acts exactly like Linux/Solaris
nscd daemon for the particular nsswitch database -
i.e. it makes requests by itself and not only caches
the results, supplied by the user.

"precache" option support

"precache [cachename] [yes|no]" option support was
added to the caching daemon. With this option
turned on, the caching daemon precaches the
specified database at startup (and, possibly, recaches
it in case of local file change – please see below).

Precaching can be very useful for such databases as
"services" when "perform-actual-lookups" method is
turned on. If we precache data on startup, all queries
to the cached would be read_request-search-
read_response queries (without any write
operations). And this type of queries is the fastest
one in the caching daemon. It has no overhead of
writing to cache, or of performing the nsdispatch(3)
lookup.

This option proper support was also made possible
only by the libc and nsswitch modules separation.

"check-files" option support

"check-files [cachename] [yes|no]” option is now
also supported by the caching daemon. With this
option turned on, cached flushes the cache for the
particular nsswitch database automatically when its
corresponding local file is changed. For example,
cache for groups is flushed in case of /etc/group file
change.

The lack of this option made caching daemon
sometimes unusable during several ports installation
process and required system administrator to flush
the cache manually after any local database update.

FreeBSD caching daemon and nscd

The libc and nss-modules separation and cached
extensions, that were made possible because of it,
are directed to make nsswitch subsystem more
powerful and flexible.

With all its current features FreeBSD caching
daemon became similar in many terms to the nscd
daemon, used in other OSes. It has its unique
feature, though - the ability to rely all the nsswitch
requests on the user side, and only cache their
results by itself. However, because of the similar
functionality and compatible configuration files,
caching daemon will be probably renamed to nscd,
when the work, described in this paper is
committed.

Conclusion

Most notable features, that the work, described here,
gives to developers are: cleaner libc and nsswitch-
modules code, the easy process of adding a
particular module to the list of libc's built-in
modules and ability to use nsdispatch(3) not only in
the libc. The latter was used to add several useful
options to the caching daemon and can be possibly
used to build specific nsswitch tools (like the
mentioned caching daemon or getent command, for
example). The described regression tests can be
used in future nsswitch development to ensure the
invariance of the nsswitch-related libc functions
behavior.

Appendix A

Include nss-modules's sources so that statically linked apps can work
normally
NSS_STATIC+= ${.OBJDIR}/../nss_files/libnss_files.a
NSS_STATIC+= ${.OBJDIR}/../nss_dns/libnss_dns.a
NSS_STATIC+= ${.OBJDIR}/../nss_compat/libnss_compat.a
.if ${MK_NIS} != "no"
NSS_STATIC+= ${.OBJDIR}/../nss_nis/libnss_nis.a
.endif
NSS_STATIC+= ${.OBJDIR}/../libnssutil/libnssutil.a

NSS-modules should be linked into the libc.a
nss_static_modules.o:
 ${LD} -o ${.TARGET} -r --whole-archive ${NSS_STATIC}

libc.so should have stubs instead of module-load
functions
nss_stubs.So:
 ${CC} ${PICFLAG} -DPIC ${CFLAGS}\
 -c ${.CURDIR}/net/nss_stubs.c -o ${.TARGET}

.if ${MK_PROFILE} != "no"
nss_static_modules.po:
 ${LD} -o ${.TARGET} -r --whole-archive ${NSS_STATIC}
.endif

DPSRC= nss_static_modules.c nss_stubs.c
STATICOBJS+= nss_static_modules.o
SOBJS+= nss_stubs.So
CLEANFILES+= nss_static_modules.o nss_stubs.So

Appendix B

The details of the described work along with the patches can be found on the FreeBSD wiki:
http://wikitest.freebsd.org/LdapCachedDetailedDescription
http://wikitest.freebsd.org/MichaelBushkov

The code is located in the perforce branch:
http://perforce.freebsd.org/depotTreeBrowser.cgi?FSPC=//depot/projects/soc2006/nss%5fldap
%5fcached/src&HIDEDEL=YES

