Implementation and Evaluation of the Dual Stack Mobile IPv6

Koshiro Mitsuya, Ryuji Wakikawa, Jun Murai Keio University, Japan

Outline

- Motivation
- DSMIPv6 operation
- Design & Implementation
- Evaluation
- Conclusion

Outline

- Motivation
- DSMIPv6 operation
- Design & Implementation
- Evaluation
- Conclusion

07.3.11

Background

- IPv6 is deployed
- IPv6 involves vast number of non-PC nodes
 - cellular phones, automobiles, sensor devices, etc.
- Mobility is a key feature
- MIPv6(RFC3775), NEMO BS(RFC3963) have been standardized
- However we are still living on:
 - IPv4 access network
 - IPv4 application

Example Configuration of current MIPv6 experiments

- No IPv6 wireless network access unless you made it by yourself
- Many IPv6 applications
 - DNS servers, some WWWs, Mail servers, VoIP, Video Streaming
- Still many IPv4 only application
 - Major WWWs, IMs

InternetCAR in-vehicle router

DSMIPv6

- Dual Stack
 - support both IPv6 and IPv4
- An extension of MIPv6/NEMO BS to support
 - IPv4 Care-of Address
 - IPv4 Home Address/Mobile Network Prefix
- "MIPv6 + its extension" is lower cost than
 "MIPv4 + MIPv6"
 - We will use MIPv6 in the near future
 - We will stop to use MIPv4 in the near future

WIDE

Purpose

- DSMIPv6 spec. is under development
- Specification Validation:
 - Confirm it can be implemented
 - Confirm it can work as expected

Outline

- Motivation
- DSMIPv6 operation
- Design & Implementation
- Evaluation
- Conclusion

07.3.11

MIPv6 operation

MIPv6 operation

MIPv6 operation

DSMIPv6 concept

MIPv6 provides IPv6 over IPv6 tunnel (blue line) DSMIPv6 provides other tunnels (red line)

07.3.11

Binding Management

- Including IPv6 and IPv4 home addresses
- Creating binding cache entries for both home addresses
- Sending/Receiving packets
 - The format is varies depending on the visited network
 - IPv6 global network
 - IPv4 global network
 - IPv4 private network

Visiting IPv6 foreign network

MIPv6 BU:

```
IPv6 header (src=V6CoA, dst=V6HA)

Destination option (V6HoA)

Mobility header (BU)
```

DSMIPv6 BU:

IPv6 header (src=V6CoA, dst=V6HA)

Destination option (V6HoA)

Mobility header (BU)

[IPv4 home address option]

Visiting IPv4 only foreign network

IPv4 header (src=V4CoA, dst=V4HA)

UDP header

IPv6 header (src=V4MAPPED, dst=V6HA)

Destination option (HoA)

Mobility header (BU)

[IPv4 home address option]

Functional Requirements

- Extending Binding Management
 - to handle IPv4 care-of address and IPv4 home address
- 2. Detecting IPv4 care-of address
- 3. Sending & Receiving binding update messages
 - via IPv4
 - IPv4 home address option
- Sending & Receiving binding acknowledgment messages
- 5. Establishing(Configuring) bi-directional tunnels
 - (IPv6-IPv6) IPv4-IPv6, IPv6-IPv4, and IPv4-IPv4

Processing bi-directional tunneled packets

Outline

- Motivation
- DSMIPv6 operation
- Design & Implementation
- Evaluation
- Conclusion

07.3.11

MIPv6/NEMO Implementation

- We extends SHISA to support DSMIPv6
- MIPv6/NEMO BS implementation for BSDs
- http://www.mobileip.jp/

WIDE

SHISA modules

Reio University

19

Binding Management

- (To solve Requirement-I,) reuse the existing Binding module by
 - storing IPv4 addresses as IPv4-mapped IPv6 address format
 - checking it is IPv4 or IPv6 wherever an address is referred. According to the address family, the correspondent function is called

Newly Defined IPv4 functions

- Sending/Receiving DSMIPv6 signaling
 - Requirement-3 and Requirement-4 are implemented at the user land space like what SHISA did for IPv6 signaling message
- Configuring a bi-directional tunneling (Requirement-5)
 - the kernel already provides various type of IP-in-IP tunnels (Requirement-6)
 - just prepare a function to configure tunnels from the user land space.

WIDE

V4 Address Detection

- Requiremet-2
 - lunch dhclient when a link became up
 - terminate the dhclient when the link became down
- Modify BABYMDD to monitor both IPv6 and IPv4 address

Detecting IPv4 care-of address and Sending a BU

C. 1858 FOR GLADIO FOR

07.3.11

WIDE

Receiving a BA and Establishing a Bi-directional tunnel

24 **WDE**

Receiving a BU, Establishing a tunnel, and Sending a BA

WIDE

Usage

- configure SHISA
 - http://www.kame.net/newsletter/20050707/
- Mobile Node:
 - # ifconfig mip0 <your IPv4 home address> home
 - specify IPv4 home agent address with the "-H" arg when you run MND/MRD
- Home Agent:
 - specify a range of IPv4 address which can be used by MNs in the configuration file

WIDE

Demonstration

Outline

- Motivation
- DSMIPv6 operation
- Design & Implementation
- Evaluation
- Conclusion

Signaling Costs(msec)

proto\ltem		2	3	4	5
MIPv6	819.077	1.612	0.232	1.101	0.234
DSMIPv6	1818.758	2.351	0.268	1.140	0.316

- I. Detecting a care-of address
- 2. Sending a binding update
- 3. Receiving a binding update
- 4. Sending a binding acknowledgement
- 5. Receiving a binding acknowledgment

WIDE

Performances

CoA-CN \ case	RTT (msec)	TCP (up/down)	UDP (up/down)
v6-v6	174.787	87Kbps /238Kbps	95.3Kbps /332Kbps
v6-v4	183.6	104.3Kbps /701Kbps	95.3Kbps /344.4Kbps
v4-v6	149.8	112Kbps /1.05Mbps	IIIKbps /324Kbps
v4-v4	183.27	103.2Kbps /1.08Mbps	IIIKbps /308.6Kbpsd

Considerations

- Works fine!
- UDP header in a binding acknowledgment
- Uses of the IPv4-mapped IPv6 address

Outline

- Motivation
- DSMIPv6 operation
- Design & Implementation
- Evaluation
- Conclusion

07.3.11

Summary

- DSMIPv6 extends MIPv6 to support IPv4 care-of address and IPv4 home address
- We extends SHISA, an open source MIPv6 implementation on BSDs, for DSMIPv6 support
- It works and the extension was small, as expected

Next Step

- NAT Traversal Support
- v4 address management/DNA
- Dynamic Home Agent Discovery

- Follow the next version of the draft
- Integration to SHISA

Acknowledgement

- KDDI R&D Laboratories
- KDDI
 - providing the experiment environment
 - confirming the protocol specification through interoperability testing

Thank you for listening!

Any question?

