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Abstract— This paper defines the problem statement

of vehicle-embedded networking in order to communi-

cate with the infrastructure (the Internet) as well as

with other cars. Based on this problem statement, we

explain the steps that allowed us to build a mobile

router addressing this problem by using state of the

art software. This software includes the NetBSD-current

kernel and networking code developed by the Japan-

based WIDE project working groups: the KAME IPv6

stack with SHISA extensions for Mobile IPv6 (MIPv6)

and Network Mobility (NEMO) support, and the Zebra-

based OLSR daemon with IPv6 extensions allowing

for a Mobile Ad Hoc Networks (MANET) and NEMO

cooperation, formerly known as MANEMO.

I. INTRODUCTION

Current research on Intelligent Transportation

System (ITS) focuses on vehicle-to-vehicle com-

munication and information exchange between

vehicles and the infrastructure network (Internet).

In the near future, vehicles will embed various

computers and sensor nodes, making a network,

whose data will be exchanged with nodes in the

Internet for various purposes such as monitoring,

safety, or entertainment. For that purpose, the

CALM1 (Communications, Air Interface, Long

and Medium Range) architecture specified at ISO

(TC204, WG16) recommends the usage of IPv6

and IPv6 mobility protocols to ensure permanent

and uninterrupted communication while moving

in the Internet topology.

NEMO Basic Support [1], specified at the IETF

in the NEMO Working Group [2], was standard-

ized to solve the IPv6 network mobility problem.

1http://www.calm.hu/

NEMO Basic Support allows a group of nodes to

connect to the Internet via a gateway: the mobile

router. It can change its point of attachment to

the IPv6 Internet infrastructure while maintaining

all the current connections transparently for all

the nodes within the mobile network and their

correspondent nodes. The only node in the mo-

bile network that is managing the mobility is

the mobile router itself. It updates its current

location in the Internet to a special router known

as the home agent, which is located in the home

network. The home agent maintains a table of

relationships between mobile routers permanent

addresses, temporary addresses, and mobile net-

work prefixes. All the traffic to or from the mobile

network is exchanged between the mobile router

and the home agent through an IPv6-over-IPv6

tunnel. This protocol can then be used to bring

global access to any car component by adding a

mobile router to the car environment. This is one

of our goals in the InternetCAR project [3], and

we show our communication model on Fig. 1.

NEMO Basic Support is thus a very likely

architecture to ensure permanent connectivity in

mobile environments. Although the main use case

would be to connect any kind of vehicles to

the Internet (such as cars, trains, buses, etc.),

the underlying architecture would be the same

(IPv6 and NEMO Basic Support) but customized

at the application layer according to the usages:

monitoring, safety, entertainment, etc.

The Internet Connected Automobile Research

(InternetCAR) Working Group was established

within the WIDE Project [4] since 1998 to con-

1



Fig. 1. InternetCAR communication model

Fig. 2. SHISA daemons architecture

nect vehicles to the Internet [5], [6], [7] by

developing the necessary tools and demonstrate

their applicability in a real-life testbed. We aim

to implement all the missing protocols to build an

in-vehicle Mobile Router. It is designed to support

IPv6 mobility and multihoming (simultaneous us-

age of several interfaces to share and load-balance

the traffic, or for fault-tolerance purposes).

InternetCAR is also developing a monitoring

application for demonstration purposes. Most of

the outputs are freely available implementations

for BSD operating systems, such as contribution

to the KAME IPv6 stack [8], and the SHISA

mobility stack [9].

The previous in-vehicle mobile router was

based on the NetBSD 1.6.2 Operating System.

The KAME IPv6 stack and SHISA stack [10]

were used to manage the network mobility. Basic

multihoming features allowed vertical handover

between Wireless LAN and cellular interfaces.

However, no vehicle-to-vehicle communication

is possible, and no monitoring software on the

mobile router makes the evaluation of the system

difficult.

The purpose of this paper is twofold: first we

make out and explain the constraints of such in-

vehicle network architecture for both hardware

and software sides. We then explain the work

done on the implementation side to build a new

version of the InternetCAR’s in-vehicle mobile

router, based on the NetBSD operating system

with respect to the previously defined constraints.

We then show an evaluation of this work.

II. A CONSTRAINED ENVIRONMENT

As explained in the previous section, one goal

of the InternetCAR project is to build an em-

bedded mobile router that is suitable for car

operation. And while the car environment is not

as constraining as some other environments from

the embedded computing domain, it still has

some features that must be accounted for when

choosing hardware and software solutions to spe-

cific problems. We will explain these environment

peculiarities by distinguishing between hardware

and software considerations.

A. Hardware related considerations

Since the car is moving, we have to pay extra

attention to the toughness of the hardware. The

road conditions can make the embedded computer

bump, so that moving parts should be avoided as

much as possible. And of course, as long as the

car is moving, it makes wireless communications

(and especially all kinds of radio communica-

tions) mandatory.

As an embedded car equipment, the size of

the mobile router must be kept to a minimum in

order to save space and weight inside the car. This

means avoiding traditional personal computer de-

sign and looking for single board computer alter-

natives.

Although AC current from the mains is not

directly available inside the car, we have sufficient
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access to power resources through the car power

source, either the alternator or the car battery.

Eventually, cars are equipped with lots of cable,

yet there might be no networking cables available

to interconnect equipments within the car, espe-

cially for current vehicles. Which means that we

might have to resort to wireless communications

again to provide in-car networking.

B. Networking related considerations

We have already introduced the ISO specified

recommendation about IPv6 and NEMO proto-

cols. These protocols allow to hide mobility in a

very convenient way, especially by relieving car

equipments from any mobility-related overhead,

handled by the mobile router.

However, in addition to these next generation

mobility protocols, we need to take the vehicle

to vehicle (V2V) scheme into account. Using

the previously mentioned mobility protocols, V2V

communication can become very painful because

the traffic has to go all the way back to both

home agents. In this case, protocols for mobile ad

hoc networks can be used to discover neighboring

mobile routers and to route traffic between them.

This means that several daemons are going to

be responsible for route injection (i.e. the mobility

daemons and the ad hoc network daemons) and

it is mandatory that they can collaborate in an

efficient way. Above all, since mobility daemons

are going to define the default route through the

NEMO tunnel, this must be done in the regular

way that allows longer prefixes to retain priority

during the routing process.

C. Problem Statement

From the previous observations, we define the

following problem statement: “How to provide

optimized connectivity to a moving car environ-

ment and all its attached equipment and users

?”. Keeping in mind that the recommended archi-

tecture from ISO must be followed to maintain

compatibility with future solutions, but slightly

amended to optimize V2V communication. And

while these software goals must be achieved, we

must also obey the guidelines that come from

hardware constraints of the car environment.

III. INTERNETCAR TEAM IMPLEMENTATION

A. Hardware Platform

By taking all hardware-related constraints into

account, we decided to use a Soekris2 single-

board computer as the key element for our mobile

router. While it features an integrated processor,

memory and two network controllers on the same

board, it also provides room fox expansion with

two Cardbus and one MiniPCI slots. This will

allow us to use many wireless network interfaces.

The mass storage is fitted through a Compact

Flash slot, which can accommodate either a flash

card or a micro hard-disk. We chose to use flash

cards to achieve a zero-spin architecture, which

means that our mobile router has no moving part.

B. Operating System Choice

We chose the NetBSD operating system for

several reasons. The first being the portability,

which guarantees that switching from the current

hardware platform to another will be easier. And

since we wanted to use MiniPCI wireless network

interfaces, we decided to use recent NetBSD

kernels, as compared to the previous version of

the mobile router.

NetBSD-Current (as of mid-October) was in-

stalled on the compact flash card using a laptop.

Then, we proceeded to the customization of the

root filesystem. This included removing system

services that are not useful for our embedded

operation, while adding specific services related

to networking stack and monitoring (see III-C to

III-F).

Then we modified the mountpoints so that the

root filesystem is mounted read-only (to protect

the flash storage) while a memory filesystem

is mounted in frequently written locations like

/var/log, /var/run and /tmp.

2http://www.soekris.com
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C. Mobility protocols

As Mobile IPv6 and NEMO Basic Support

implementation, SHISA is freely available for

BSD variants. However, SHISA is an extension

of KAME IPv6 implementation and it is not

available for any BSD main branch yet. We thus

have ported SHISA to NetBSD-Current with the

help of the SHISA developers team.

The main design principle of SHISA is the

separation of signaling and forwarding functions.

The operation of Mobile IPv6 and NEMO Basic

Support is basically IP packet routing (forwarding

or tunneling). In order to obtain better perfor-

mance, the packet routing should be done in

the kernel space. The signal processing should

be done in the user space, since the process is

complex and it is easier to modify/update user

space programs than kernel. This separation pro-

vides both good performance and efficiency in

developing the stack.

In SHISA, a mobile node (host or router)

consists of small kernel extensions to pro-

cess mobility headers and to forward packets,

and several user land daemons (MND, MRD,

BABYMDD, MDD, NEMONETD, HAD and

CND). MND/MRD are daemons which manage

bindings on a mobile node. BABYMDD/MDD

are daemons which detect the changes of tem-

porary addresses and notifies them to MND or

MRD. NEMONETD is a daemon which manages

bi-directional tunnels. HAD is a daemon which

manages bindings on a home agent. CND is a dae-

mon which manages bindings on a correspondent

node. Depending on the node type, one or several

SHISA daemons run on a node. For instance,

MRD, NEMONETD and MDD are running on

our mobile router. The relationship between user

land daemons and kernel is detailed in Fig. 2.

D. Mobile Ad Hoc Network protocol

To address the efficiency problem of V2V com-

munication, we explained in section II-B that it

would be possible to route traffic using a Mobile

Ad Hoc Network (MANET) protocol. We decided

to base our work on a proactive routing protocol

because the neighboring nodes discovery process

is more tightly integrated by distributing topology

information. The protocol we chose is OLSR [11].

Although the RFC does include enhancements

to announce host/network associations, it is not

definite about IPv6 networks nor IPv6 hosts. We

use a routing daemon developed in Keio Univer-

sity and functioning as a plug-in to the Zebra

framework. It is already going beyond the scope

of the RFC by supporting IPv6 hosts.

We modified this daemon to support IPv6

mobile routers announces (i.e. which prefix is

reachable through which node) and added support

for sub-second precision in Zebra timers. It is

then possible to discover mobile routers that are

nodes of the MANET at the current time, and use

OLSR routing services to route V2V traffic. This

is further described in [12] where we show that

it is possible to discover new nodes and broken

links in less than 100 milliseconds.

E. Interface management

Since an automobile moves around, the mobile

router in the automobile needs to perform han-

dovers between wireless access points. For this

operation, it is required to carry out discovery of

base stations, to connect to one of these stations,

and to detach from the previous base station.

Casanova is an automatic Wireless LAN

SSID/Wepkey switcher for FreeBSD and

NetBSD. Casanova handles ESSID and wepkey

and configures the wireless network interface

while handing over from one access point to

another. Casanova also acts as an IPv6 address

manager. It requests to configure a new IPv6

address when the mobile router is connected to

a new link, and to remove an old IPv6 address

when disconnected.

F. Monitoring software

The embedded nature of the mobile router

requires a flawless operation. However, there are

some cases where mobile router operation is not

possible, especially when no connection is avail-

able. This can be reported by our dedicated mon-

itoring software. There are two small daemons
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sharing the same codebase. One is showing statis-

tics locally using the front LED of the Soekris box

(to diagnose connectivity problems). The other

one is the SONAR3 client, which records and

prepares the data for transmission to a remote

repository. It can be stored in the filesystem

too, and sent later so as not to disturb ongoing

experiments.

The monitoring architecture is very modular

and allows for fast development and integration

of new features to monitor. It is written in C and

supports several platforms: NetBSD, FreeBSD

and Linux. Statistics are polled on a regular

basis using a user-defined interval, between a

few milliseconds and several hours. This requires

interaction with routing daemons (SHISA and

OLSR) and the kernel.

A report is built for each polling interval using

an XML tree structure. These reports can be sent

regularly (another user-defined interval) or even

kept in a local storage area and collected later.

For an in-depth presentation of the monitoring

architecture, please refer to [13].

IV. EVALUATION OF IMPLEMENTATION

The mobile router that we described in this

paper was implemented during the October month

in year 2006. It can be seen on Fig. 3.

The picture on Fig. 3(a) shows the single-board

computer (Soekris net4521) that we use to imple-

ment our mobile router architecture. Both pictures

on Fig. 3(b) and Fig. 3(c) show experiments that

we made using the mobile router. The former is an

electric car manufactured by Toyota which has all

approvals required to be driven on open road. The

mobile router can be seen just behind the driver’s

seat. The latter illustrates the experiment led at

the Open Research Forum in Tokyo (October

2006), where we equipped an electric bus with the

mobile router, SNMP sensors and an IPv6 camera.

Before the implementation process, we were

facing some questions about the behavior of

networking component with respect to the each

others. However, the interaction between the

3http://sonar.nautilus6.org

SHISA/KAME stack and the Zebra daemons went

very smoothly. In fact, the main problem we faced

during the implementation was a routing issue

when using the KAME stack : at that time, it was

impossible to send messages from SHISA dae-

mons through a gif tunnel because the endpoints

were not recorded in the neighbor cache.

With this achievement, we could perform some

measurements on the workbench before the mo-

bile router is put into vehicles. We especially

investigated the booting time for the whole system

and the amount of time required before the mo-

bile router is successfully registered to its Home

Agent, or before the network interface becomes

available. These results are shown in table I.

Following this implementation, several soft-

ware releases will happen. The casanova program

used for interface management has already been

released4. The SONAR client used for statistics

monitoring is due to be released by the end of the

year. Although we used a NetBSD-current port of

the SHISA stack for NetBSD-current, we can not

tell for sure when it is going to be released to the

public.

V. CONCLUSION

After a thorough description of the target en-

vironment and its constraints, we could define

a specific problem statement that led us to the

current implementation of a in-vehicle mobile

router. It is based on the NetBSD-current (October

2006) operating system and uses several advanced

networking code from the WIDE project.

The core IPv6 and NEMO functionnality

is supported by the KAME/SHISA networking

stack, while MANET routing is handled by the

OLSR routing protocol, using a modified imple-

mentation built as a plugin to the Zebra frame-

work. These routing daemons were made to co-

operate and routing decisions are based on the

availability of mobile routers in the MANET

vicinity. On a lower level, we developped software

to control the network interfaces used by the

SHISA stack. Eventually, monitoring is made by

4http://software.nautilus6.org
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(a) The Soekris SBC

(b) A test vehicle : Toyota COMS (c) The ORF experiment : Marunouchi Shuttle

Fig. 3. The mobile router implementation
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Total boot time NetBSD boot Interface startup MIPv6 / NEMO registration

PHS 79 s 60 s 11 s 8 s

WIFI 77 s 58 s 11 s 8 s

TABLE I

BOOTING TIME PROFILING

specific software that polls every component that

needs to be reported.

Using this implementation, we were able to

show preliminary results about booting time that

confirm the fact that the choice of the NetBSD OS

is suitable for in-car operation (with one minute

and a half booting time).

As a next step, we are going to use this

mobile router on a daily basis in personal cars,

and at specific exhibitions like the ORF 2006 in

Tokyo 5. However, to be operable at public scale,

we need to further investigate security issues at

the network and datalink layers. The former will

be achieved using IPSec transport between the

mobile router and the home agent while we might

resort to hardware encryption (WEP or WPA) for

the latter.
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Abstract

Since late 2000 we have developed and maintained
a general purpose technical and scientific computing
cluster running the FreeBSD operating system. In
that time we have grown from a cluster of 8 dual In-
tel Pentium III systems to our current mix of 64 dual
Intel Xeon and 289 dual AMD Opteron systems. This
paper looks back on the system architecture as docu-
mented in our BSDCon 2003 paper “Building a High-
performance Computing Cluster Using FreeBSD” and
our changes since that time. After a brief overview
of the current cluster we revisit the architectural de-
cisions in that paper and reflect on their long term
success. We then discuss lessons learned in the pro-
cess. Finally, we conclude with thoughts on future
cluster expansion and designs.

1 Introduction

From the early 1990’s on, the primary thrust of high
performance computing (HPC) development has been
in the direction of commodity clusters, commonly re-
ferred to as Beowulf clusters [Becker]. These clusters
combine commercial off-the-shelf hardware to create
systems which rival or exceed the performance of tra-
ditional supercomputers in many applications while
costing as much as a factor of ten less. Not all applica-
tions are suitable for clusters, but a signification por-
tion of interesting scientific applications can be suc-
cessfully adapted to them.

In 2001, driven by a number of separate users with
supercomputing needs, The Aerospace Corporation (a
California nonprofit corporation that operates a Fed-
erally Funded Research and Development Center) de-
cided to build a corporate computing cluster (even-
tually named Fellowship for The Fellowship of the

c©2007 The Aerospace Corporation.

Ring [Tolkien]) as an alternative to continuing to buy
small clusters and SMP systems on an ad-hoc basis.
This decision was motivated by a desire to use com-
puting resources more efficiently as well as reducing
administrative costs. The diverse set of user require-
ments in our environment led us to a design which dif-
fers significantly from most clusters we have seen else-
where. This is especially true in the areas of operating
system choice (FreeBSD) and configuration manage-
ment (fully network booted nodes).

At BSDCon 2003 we presented a paper titled “Build-
ing a High-performance Computing Cluster Using
FreeBSD” [Davis] detailing these design decisions.
This paper looks back on the system architecture as
documented in that paper and our changes since that
time. After a brief overview of the current cluster
we revisit the architectural decisions in that paper
and reflect on their long term success. We then dis-
cuss lessons learned in the process. Finally, we con-
clude with thoughts on future cluster expansion and
designs.

2 Fellowship Overview

The basic logical and physical layout of Fellowship
is similar to many clusters. There are six core sys-
tems, 352 dual-processor nodes, a network switch, and
assorted remote management hardware. All nodes
and servers run FreeBSD, currently 6.2-RELEASE.
The core systems and remote management hardware
sit on the Aerospace corporate network. The nodes
and core systems share a private, non-routed network
(10.5/16). The majority of this equipment is mounted
in two rows of seven-foot tall, two-post racks residing
in the underground data center at Aerospace head-
quarters in El Segundo, California. Figure 1 shows
Fellowship in Fall 2006. The layout of a recent node
racks is shown in Figure 2. The individual racks vary
due to design changes over time.

When users connect to Fellowship, they do so via a
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Figure 1: Fellowship Circa February 2007

core server named fellowship that is equipped to
provide shell access. There they edit and compile their
programs and submit jobs for execution on a node or
set of nodes. The scheduler is run on the core server
arwen that also provides network boot services to the
nodes to centralize node management. Other core
servers include: frodo which provides directory ser-
vice for user accounts and hosts the license servers for
commercial software including the Intel FORTRAN
compiler and Grid Mathematica; gamgee which pro-
vides backups using the Bacula software and a 21
tape LTO2 changer; elrond and legolas which host
shared temporary file storage that is fast and large
respectively; and moria, our Network Appliance file
server.

The nodes are currently a mix of older Intel Xeons
and single and dual-core AMD Opterons. Table 1
gives a breakdown of general CPU types in Fellow-
ship today. Figure 4 and Figure 5 show the composi-
tion of Fellowship over time by node and core count.
Each node as an internal ATA or SATA disk that is
either 80GB or 250GB and between 1 and 4 giga-
bytes of RAM. The nodes are connected via Gigabit
Ethernet through a Cisco Catalyst 6509 switch1 The

1This was originally a Catalyst 6513, but most slots in the
6513 have reduced available bandwidth so we upgraded to the

CPU Type Nodes CPUs Cores
Xeon 64 128 128
Opteron single-core 136 272 272
Opteron dual-core 152 304 608
Total 352 704 1008

Table 1: CPUs in Fellowship nodes.

Opterons are mounted in custom 1U chassis approxi-
mately 18 inches deep with IO ports and disks facing
the front of the rack. Figure 3 shows the front of first
generation Opteron nodes.

Although the nodes have disks, we network boot them
using PXE support on their network interfaces with
frodo providing DHCP, TFTP, NFS root disk, and
NIS user accounts. On boot, the disks are automat-
ically checked to verify that they are properly par-
titioned for our environment. If they are not, they
are automatically repartitioned. This means minimal
configuration of nodes is required beyond determining
their MAC address and location. Most of that config-
uration is accomplished by scripts.

Local and remote control of core machines is made

smaller 6509.
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Unit Contents
45 Patch panel
44 (Connection to patch panel rack)
43 empty
42 empty
41 empty
40 node (r01n32: 10.5.1.32)
39 node (r01n31: 10.5.1.31)
38 node (r01n30: 10.5.1.30)
37 node (r01n29: 10.5.1.29)
36 node (r01n28: 10.5.1.28)
35 node (r01n27: 10.5.1.27)
34 node (r01n26: 10.5.1.26)
33 node (r01n25: 10.5.1.25)
32 Cyclades 10-port power controller
31 Cyclades 10-port power controller
30 node (r01n24: 10.5.1.24)
29 node (r01n23: 10.5.1.23)
28 node (r01n22: 10.5.1.22)
27 node (r01n21: 10.5.1.21)
26 node (r01n20: 10.5.1.20)
25 node (r01n19: 10.5.1.19)
24 node (r01n18: 10.5.1.18)
23 node (r01n17: 10.5.1.17)
22 rackmount KVM unit
21 node (r01n16: 10.5.1.16)
20 node (r01n15: 10.5.1.15)
19 node (r01n14: 10.5.1.14)
18 node (r01n13: 10.5.1.13)
17 node (r01n12: 10.5.1.12)
16 node (r01n11: 10.5.1.11)
15 node (r01n10: 10.5.1.10)
14 node (r01n09: 10.5.1.9)
13 Cyclades PM 10-port power controller
12 Cyclades PM 10-port power controller
11 node (r01n08: 10.5.1.8)
10 node (r01n07: 10.5.1.7)
9 node (r01n06: 10.5.1.6)
8 node (r01n05: 10.5.1.5)
7 node (r01n04: 10.5.1.4)
6 node (r01n03: 10.5.1.3)
5 node (r01n02: 10.5.1.2)
4 node (r01n01: 10.5.1.1)
3
2 4 120V 30A & 1 120 V 20A Circuits
1

Figure 2: Layout of Node Rack 1

possible through a Lantronix networked KVM-switch
connected to a 1U rackmount keyboard, and track
pad and an 18-inch rackmount monitor which dou-
bles as a local status display. In the newer racks, 1U
rack mount keyboard, monitor, mouse (KVM) units
are installed to allow administrators to easily access
local consoles during maintenance. In addition to
console access, everything except the terminal servers
and the switch are connected to serial remote power
controllers. The older racks use a variety of 8-port
BayTech power controllers and the new ones use 10-
port Cyclades AlterPath PM series controllers. All

Figure 3: Front details of Opteron nodes

Figure 4: Fellowship node count and type over time

Figure 5: Fellowship core count and type over time
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of these controllers are capable of supplying a total
of 30 Amps of power at 120 Volts. This allows us to
remotely reboot virtually any part of the system by
connecting to the power controller via the appropri-
ate terminal server.

On top of this infrastructure, access to nodes is con-
trolled by Sun Grid Engine (SGE), a scheduler im-
plementing a superset of the POSIX Batch Environ-
ment Services specification. SGE allows users to sub-
mit both interactive and batch job scripts to be run
on one or more processors. Users are free to use the
processors they are allocated in any reasonable man-
ner. They can run multiple unrelated processes or
massively parallel jobs.

To facilitate use of Fellowship, we provide a basic Unix
programming environment, plus the parallel program-
ming toolkits, and commercial parallel applications.
For parallel programming toolkits we provide MPICH,
MPICH2, and OpenMPI implementations of the Mes-
sage Passing Interface [MPI] (MPI) as well as the Par-
allel Virtual Machine (PVM). We also provide Grid
Mathematica and MATLAB under Linux emulation.

3 Design Issues

One of the biggest challenges in building Fellowship
was our diverse user base. Among the users at the
initial meetings to discuss cluster architecture, we had
users with loosely coupled and tightly coupled appli-
cations, data intensive and non-data intensive appli-
cations, and users doing work ranging from daily pro-
duction runs to high performance computing research.
This diversity of users and applications led to the com-
promise that was our initial design. Many aspects of
this design remain the same, but some have changed
based on our experiences. In this section we highlight
the major design decisions we made while building Fel-
lowship and discuss how those decisions have fared in
the face of reality.

3.1 Operating System

The first major design decision any cluster designer
faces is usually the choice of operating system. By
far, the most popular choice is a Linux distribution of
some sort. Indeed, Linux occupies much the same
position in the HPC community as Windows does
in the desktop market to the point most people as-
sume that, if it is a cluster, it runs Linux. In real-
ity a cluster can run almost any operating system.
Clusters exist running Solaris [SciClone], MacOS X,

FreeBSD, and Windows[WindowsCCS] among others.
NASA’s Columbia [Columba] super computer is actu-
ally a cluster of 24 SGI Altix systems 21 of which are
512-CPU system.

For an organization with no operating system bias
and straight-forward computing requirements, run-
ning Linux is the path of least resistance due to free
clustering tool kits such as Rocks [ROCKS] or OS-
CAR [OSCAR]. In other situations, operating system
choice is more complicated. Important factors to con-
sider include chosen hardware platform, existence of
experienced local system administration staff, avail-
ability of needed applications, ease of maintenance,
system performance, and the importance of the abil-
ity to modify the operating system.

For a variety of reasons, we chose FreeBSD for Fellow-
ship. The most pragmatic reason for doing so is the
excellent out of the box support for diskless systems
which was easily modifiable to support our nodes net-
work booting model. This has worked out very well.

Additionally, the chief Fellowship architect uses
FreeBSD almost exclusively and is a FreeBSD com-
mitter. This meant we had more FreeBSD experience
than Linux experience and that we could push some of
our more general changes back into FreeBSD to sim-
plify operating system upgrades. We have been able
to feed back a number of small improvements, par-
ticularly in the diskless boot process which has bene-
fited us and other FreeBSD users. For changes which
are too Aerospace- or Fellowship-specific to contribute
back, we have maintained an internal Perforce repos-
itory with a customized version of FreeBSD.

The ports collection was also a major advantage of us-
ing FreeBSD. It has allowed us to install and maintain
user-requested software quickly and easily. For most
applications the ports collection has worked well. The
major exception is anything related to MPI. MPI im-
plementations are generally API compatible, but use
different symbols, libraries, and header files. As a re-
sult MPI implementations traditionally provide a set
of wrapper scripts for the compiler along the lines of
mpicc, mpic++, mpif77, etc which take care of the de-
tails of linking. Unfortunately a different compilation
of MPI is needed for each compiler and it is useful to
have multiple MPI versions. The ports framework is
not equipped to deal with such combinatorial explo-
sions.

The availability of Linux emulation meant we did not
give up much in the way of application compatibility.
We were the launch customer for Grid Mathematica
using the Linux version. We have also run other third-
party Linux programs including MPI applications.
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Initially the disadvantages of FreeBSD for our pur-
poses were immature SMP and threading support, and
an widely held view within the high performance com-
puting community that if it isn’t a commercial super-
computer, it must be a Linux system. SMP support
was not a major issue for our users because most of
our jobs are compute-bound so the poor SMP perfor-
mance under heavy IO was a moot problem. With the
5.x and 6.x series of FreeBSD releases, this issue has
largely been resolved. Threading was more of an issue.
We had users who wanted to use threads to support
SMP scaling in certain applications and with the old
user space threading provided by libc r they could
not do that. With our migration to the FreeBSD 6.x
series, this problem has been resolved.

The Linux focus of the HPC community has caused
us some problems. In particular, many pieces of soft-
ware either lack a FreeBSD port, or only have a poorly
tested one which does not actually work out of the
box. In general we have been able to complete ports
for FreeBSD without issue. One significant exception
was the LAM implementation of MPI. In 4.x it worked
fine, but in 5.x and 6.x it builds but crashes instead
of running. We have been unable to find and fix the
problems. Initially there was a shortage of compiler
support for modern versions of FORTRAN. This has
been changed by two things: the gfortran project’s
FORTRAN 90 and 95 compiler and the wrapping of
the Intel Linux FORTRAN compiler to build FreeBSD
software. A FreeBSD FORTRAN compiler is also
available from NAG. One other issue is the lack of
a parallel debugger such as TotalView.

We are happy with the results of running FreeBSD
on the cluster. It has worked well in for us and the
occasional lack of software had been more than made
up for by our existing experience with FreeBSD.

3.2 Hardware Architecture

The choice of hardware architecture is generally made
in conjunction with the operating system as the two
interact with each other. Today, most clusters are
based on Intel or AMD x86 CPUs, but other choices
are available. When developing Fellowship, SPARC
and Alpha clusters were fairly command as were Ap-
ple XServe clusters based on the PowerPC platform.
Today, the Alpha is essentially gone and Apple has
migrated from PowerPC to Intel CPUs leaving x86
with the vast majority of the HPC cluster market.
The major issues to consider are price, performance,
power consumption, and operating system compatibil-
ity. For instance, Intel’s Itanium2 has excellent float-
ing point performance, but is expensive and power
hungry. Early on it also suffered form immature oper-

ating system support. In general, x86 based systems
are the path of least resistance given the lack of a
conflicting operating system requirement.

When we were selecting a hardware architecture in
2001, the major contenders were Alpha and Intel or
AMD based x86 systems. We quickly discarded Al-
pha from consideration because of previous experi-
ences with overheating problems on a small Aerospace
Alpha cluster. Alphas also no longer had the kind of
performance lead they enjoyed in the late 1990’s. We
looked at both Pentium III and Athlon-based systems,
but decided that while the performance characteristics
and prices did not vary significantly, power consump-
tion was too problematic on the Athlon systems.

Over the life of Fellowship, we have investigated other
types of nodes including Athlon based systems, the
Xeon systems we purchased for the 2003 expansion,
AMD Opteron systems, and Intel Woodcrest systems.
Athlons failed to match the power/performance ra-
tios of Intel Pentium III systems, but with the Xeon
and Opteron processors the balance shifted resulting
in purchases of Opterons in 2004 through 2006. We
are now evaluating both AMD and Intel based solu-
tions for future purchase. One interesting thing we’ve
found is that while the Intel CPUs themselves con-
sume less power, the RAM and chipsets they use are
substantially more power hungry. This illustrates the
need to look a all aspects of the system not just the
CPUs.

3.3 Node Architecture

Most of the decisions about node hardware will derive
from the selection of hardware architecture, cluster
form factor, and network interface. The biggest of the
remaining choices is single or multi-processor systems.
Single processor systems have better CPU utilization
due to a lack of contention for RAM, disk, and network
access. Multi-processor systems can allow hybrid ap-
plications to share data directly, decreasing their com-
munication overhead. Additionally, multi-processor
systems tend to have higher performance interfaces
and internal buses then single processor systems. This
was significant consideration with Fellowship’s initial
design, but the current direction of processor develop-
ment suggest that only multiple core CPUs will exist
in the near future.

Other choices are processor speed, RAM, and disk
space. We have found that aiming for the knee of
the price curve has served us well, since no single user
dominates our decisions. In other environments, top
of the line processors, large disks, or large amounts of
RAM may be justified despite the exponential increase
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CPU 2 x Pentium III 1GHz
Network Interface 3Com 3C996B-T
RAM 1GB
Disk 40GB 7200RPM IDE

Table 2: Configuration of first Fellowship nodes.

CPU 2 x Opteron 275 2x2.2GHz
Network Interface On board gigabit
RAM 4GB
Disk 250GB 7200RPM SATA

Table 3: Configuration of latest Fellowship nodes.

in cost.

For Fellowship, we chose dual CPU systems. We were
motivated by a desire to do research on code that
takes advantage of SMP systems in a cluster, higher
density than single processor systems, and the fact
that the 64-bit PCI slots we needed for Gigabit Eth-
ernet were not available on single CPU systems. As
a result of our focus on the knee of the price curve,
we have bought slightly below the performance peak
on processor speed, with 2-4 sticks of smaller-than-
maximum RAM, and disks in the same size range as
mid-range desktops. This resulted in the initial con-
figuration shown in Table 2. The most recent node
configuration is shown in Table 3.

3.4 Network Interconnects

Like hardware architecture, the selection of network
interfaces is a matter of choosing the appropriate point
in the trade space between price and performance.
Performance is generally characterized by bandwidth
and latency. The right interface for a given cluster de-
pends significantly on the jobs it will run. For loosely-
coupled jobs with small input and output data sets,
little bandwidth is required and 100Mbps Ethernet is
the obvious choice. For other, tightly-coupled jobs, In-
finiBand or 10 Gbps Myrinet which have low latency
and high bandwidth are good options For some appli-
cations 1 Gbps or 10 Gbps Ethernet will be the right
choice.

The choice of Gigabit Ethernet for Fellowship’s inter-
connect represents a compromise between the cheaper
100 Mbps Ethernet our loosely coupled applications
would prefer (allowing us to buy more nodes) and
2Gbps Myrinet. When we started building Fellow-
ship, Gigabit Ethernet was about one-third of the cost
of each node whereas Myrinet would have more than
doubled our costs. Today Gigabit Ethernet is stan-
dard on the motherboard and with the large switches

required by a cluster Fellowship’s size, there is no price
difference between 100 Mbps and 1 Gbps ether ports.

Gigabit Ethernet has worked well for most of our ap-
plications. Even our computational fluid dynamics
(CFD) applications have run reasonably well on the
system. A few applications such as the CFD codes
and some radiation damage codes would benefit from
higher bandwidth and lower latency, but Gigabit Eth-
ernet appears to have been the right choice at the
time.

3.5 Core Servers and Services

On Fellowship, we refer to all the equipment other
then the nodes and the remote administration hard-
ware as core servers. On many clusters, a single core
server suffices to provide all necessary core services.
In fact, some clusters simply pick a node to be the
nominal head of the cluster. Some large clusters pro-
vide multiple front ends, with load balancing and fail
over support to improve up time.

Core services are those services which need to be avail-
able for users to utilize the cluster. At a minimum,
users need accounts and home directories. They also
need a way to configure their jobs and get them to the
nodes. The usual way to provide these services is to
provide shared home and application directories, usu-
ally via NFS and use a directory service such as NIS
to distribute account information. Other core services
a cluster architect might choose to include are batch
schedulers, databases for results storage, and access
to archival storage resources. The number of ways
to allocate core servers to core services is practically
unlimited.

Fellowship started with three core servers: the data
server, the user server, and the management server.
All of these servers are were dual 1GHz Pentium
III systems with SCSI RAID5 arrays. The data
server, gamgee, served a 250GB shared scratch vol-
ume via NFS, and performed nightly backups to a 20
tape LTO library using AMANDA. The user server,
fellowship, served NFS home directories and gave
the users a place to log in to compile and run ap-
plications. The management server, frodo, ran the
scheduler, NIS, and our shared application hierarchy
mounted at /usr/aero. Additionally, the manage-
ment server uses DHCP, TFTP, and NFS to netboot
the nodes.

Today, Fellowship has eight core servers. The data
server has been split into three machines: elrond,
gamgee, and legolas. elrond is a 2.4GHz dual Xeon
with SCSI raid that provides /scratch. gamgee it
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self has been replaced with a dual Opteron with 1TB
of SATA disk. It runs backups using Bacula a net-
work based backup program. legolas provides 2.8GB
of shared NFS disk at /bigdisk. The user server,
fellowship, is now a quad Opteron system and home
directories are served by moria, a Network Appliance
FAS250 filer. It is supplemented by a second quad
Opteron, fellowship-64 which runs FreeBSD amd64.
The original management servers, frodo, still exists,
but currently only runs NIS. It has mostly been re-
placed by arwen which has taken over running the
Sun Grid Engine scheduler and netbooting the nodes.

These services were initially isolated from each other
for performance reasons. The idea was that hitting the
shared scratch space would not slow down ordinary
compiles and compiling would not slow down scratch
space access. We discovered that, separation of ser-
vices does work, but it comes at the cost of increased
fragility because the systems are interdependent, and
when one fails, they all have problems. We have de-
vised solutions to these problems, but this sort of divi-
sion of services should be carefully planned and would
generally benefit from redundancy when feasible. Our
current set of servers is larger than optimal from an
administrative perspective. This situation arose be-
cause new core servers were purchased opportunisti-
cally when end of year funds were available and thus
older servers have not been gracefully retired.

3.6 Node Configuration Management

Since nodes outnumber everything else on the sys-
tem, efficient configuration management is essential.
Many systems install an operating system on each
node and configure the node-specific portion of the
installation manually. Other systems network boot
the nodes using Etherboot, PXE or LinuxBIOS. The
key is good use of centralization and automation. We
have seen many clusters where the nodes are never up-
dated without dire need because the architect made
poor choices that made upgrading nodes impractical.

Node configuration management is probably the
most unique part of Fellowship’s architecture. We
start with the basic FreeBSD diskless boot pro-
cess [diskless(8)]. We then use the diskless remount
support to mount /etc as /conf/base/etc. For many
applications, this configuration would be sufficient.
However, we have applications which require signifi-
cant amounts of local scratch space. To deal with this
each node contains a disk. The usual way of handling
such disks would be to manually create appropriate
directory structures on the disk when the system was
first installed and then let the nodes mount and fsck
the disks each time they were booted. We deemed

this impractical because nodes are usually installed in
large groups. Additionally, we wanted the ability to
reconfigure the disk along with the operating system.

In our original FreeBSD 4.x based installation, we cre-
ated a program (diskmark) which used an invalid en-
try in the MBR partition table to store a magic num-
ber and version representing the current partitioning
scheme. At boot we used a script which executed be-
fore the body of rc.diskless2 to examine this entry
to see if the current layout of the disk was the required
one. If it was not, the diskless scripts automatically
use Warner Losh’s diskprep script to initialize the
disk according to our requirements. With FreeBSD
6.x we adopted a somewhat less invasive approach.
We still use a version of diskprep to format the disk,
but now we use glabel volume labels to identify the
version of the disk layout. The script that performs
the partitioning is installed in /etc/rc.d instead of re-
quiring modification of /etc/rc. We install the script
in the node image using a port.

With this configuration, adding nodes is very easy.
The basic procedure is to bolt them into the rack, hook
them up, and turn them on. We then obtain their
MAC address from the switch’s management console
and add it to the DHCP configuration so each node
is assigned a well-known IP address. After running a
script to tell the scheduler and Nagios about the nodes
and rebooting them, they are ready for use.

Under FreeBSD 4.x, maintenance of the netboot im-
age is handed by chrooting to the root of the installa-
tion and following standard procedures to upgrade the
operating system and ports as needed. With our move
to FreeBSD 6.x we have also moved to a new model
of netboot image updating. Instead of upgrading a
copy, we create a whole new image from scratch using
parts of the nanobsd [Gerzo] framework. The motiva-
tion for switching to this mode was that in the four
years since we got the initial image working we had
forgotten all the customizations that were required to
make it fully functional. Since 6.x has an large num-
ber of differences in configuration from 4.x, this made
it difficult to upgrade. Our theory with creating new
images each time is that it will force us to document
all the customizations either in the script or in a sep-
arate document that will be manually modified. Thus
far, this has worked to some degree, but has not been
perfect as creation of some of the images has been
rushed resulting in a failure to document everything.
In the long term, we expect it to be a better solu-
tion than in place upgrades. Software which is not
available from the ports collection is installed in the
separate /usr/aero hierarchy.

One problem we found with early systems was poor
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Mountpoint Source
/ arwen:/export/roots/freebsd/fbsd62
/etc /dev/md0
/tmp /dev/ufs/tmp
/var /dev/ufs/var
/home moria:/home
/usr/aero frodo:/nodedata/usr.aero
/usr/local/sge/fellowship arwen:/export/sge/fellowship
/scratch elrond:/scratch
/bigdisk legolas:/bigdisk

Table 4: Sample node (r01n01 aka 10.5.1.1) mount structure

quality PXE implementations. We have found PXE to
be somewhat unreliable on nearly all platforms, par-
ticularly on the Pentium III systems, occasionally fail-
ing to boot from the network for no apparent reason
and then falling back to the disk which is not config-
ured to boot. Some of these problems appear to be
caused by interactions with network switches and the
spanning tree algorithm. To work around this prob-
lem we have created a diskprep configuration that
creates an extra partition containing FreeDOS and
an AUTOEXEC.BAT that automatically reboots the ma-
chine if PXE fails rather than hanging. It would be
better if server motherboard vendors added an option
to the BIOS to keep trying in the event of a PXE
failure.

3.7 Job Scheduling

Job scheduling is potentially one of the most com-
plex and contentious issues faced by a cluster archi-
tect. The major scheduling options are running with-
out any scheduling, manual scheduling, batch queuing,
and domain specific scheduling.

In small environments with users who have compatible
goals, not having a scheduler and just letting users run
what they want when they want or communicating
with each other out of band to reserve resources as
necessary can be a good solution. It has very little
administrative overhead, and in many cases, it just
works.

With large clusters, some form of scheduling is usually
required. Even if users do not have conflicting goals,
it’s difficult to try to figure out which nodes to run
on when there are tens or hundreds available. Ad-
ditionally, many clusters have multiple purposes that
must be balanced. In many environments, a batch
queuing system is the answer. A number exist, in-
cluding OpenPBS, PBSPro, Sun Grid Engine (SGE),
LSF, Torque, NQS, and DQS. Torque and SGE are
freely available open source applications and are the

most popular options for cluster scheduling. When we
started building Fellowship OpenPBS was quite pop-
ular and SGE was not yet open source.

For some applications, batch queuing is not a good
solution. This is usually either because the applica-
tion requires too many jobs for most batch queuing
systems to keep up, or because the run time of jobs is
too variable to be useful. For instance, we have heard
of one computational biology application which runs
through tens of thousands of test cases a day where
most take a few seconds, but some may take minutes,
hours, or days to complete. In these situations, a do-
main specific scheduler is often necessary. A common
solution is to store cases in a database and have ap-
plications on each node that query the database for a
work unit, process it, store the result in the database,
and repeat.

On Fellowship, we have a wide mix of applications
ranging from trivially schedulable tasks to applica-
tions with unknown run times. Our current strat-
egy is to implement batch queuing with a long-term
goal of discovering a way to handle very long run-
ning applications. We initially intended to run the
popular OpenPBS scheduler because it already had a
port to FreeBSD and it is open source. Unfortunately,
we found that OpenPBS had major stability problems
under FreeBSD (and, by many accounts, most other
operating systems)2. About the time we were ready
to give up on OpenPBS, Sun released SGE as open
source. FreeBSD was not supported initially, but we
were able to successfully complete a port based on
some patches posted to the mailing lists. That initial
port allowed jobs to run. Since then we have added
more functionality and the FreeBSD port is essentially
at feature parity with the Linux port.

The major problem we had with scheduling is that ini-
tially, we allowed direct access to cluster nodes with-
out the scheduler. While we had few users and not

2The Torque resource manager is a successful fork of
OpenPBS to support the Maui scheduler
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all systems were full at all times, this was not a big
deal. Unfortunately, as the system filled up, it be-
came a problem. We had assumed that users would
see the benefits of using the scheduler such as unat-
tended operation and allocation of uncontested re-
sources, but most did not. Worse, those few who did
often found themselves unable to access any resources
because the scheduler saw that all the nodes were over-
loaded. Those users then gave up on the scheduler.
We eventually imposed mandatory use of the sched-
uler along with a gradual transition to FreeBSD 6.x
on the nodes. There was a fair bit of user rebellion
when this happened, but we were able to force them
to cooperate eventually. In retrospect failure to man-
date use of the scheduler as soon as it was operational
was a significant error.

3.8 Security Considerations

For most clusters, we feel that treating the cluster as
a single system is the most practical approach to se-
curity. Thus for nodes which are not routed to the In-
ternet like those on Fellowship, all exploits on nodes
should be considered local. What this means to a
given cluster’s security policy is a local issue. For
systems with routed nodes, management gets more
complicated, since each node becomes a source of po-
tential remote vulnerability. In this case it may be
necessary to take action to protect successful attacks
on nodes from being leveraged into full system access.
In such situations, encouraging the use of encrypted
protocols within the cluster may be desirable, but the
performance impact should be kept firmly in mind.

The major exception to this situation is clusters where
jobs have access to data that must not be mingled.
We have begun an investigation into ways to isolate
jobs from each other more effectively. We believe that
doing so will yield both improved security and better
performance predictability.

For the most part we have chosen to concentrate on
protecting Fellowship from the network at large. This
primarily consists of keeping the core systems up to
date and requiring that all communications be via
encrypted protocols such as SSH and HTTPS. Inter-
nally we discourage direct connections between nodes
except by scheduler-provided mechanisms that could
easily be encrypted. Inter-node communications are
unencrypted for performance reasons.

3.9 System Monitoring

The smooth operation of a cluster can be aided by
proper use of system monitoring tools. Most common
monitoring tools such as Nagios and Big Sister are
applicable to cluster use. The one kind of monitoring
tool that does not work well with clusters is the sort
that sends regular e-mail reports for each node. Even
a few nodes will generate more reports then most ad-
mins have time to read. In addition to standard mon-
itoring tools, there exist cluster specific tools such as
the Ganglia Cluster Monitor. Most schedulers also
contain monitoring functionality.

On Fellowship we are currently running the Ganglia
Cluster Monitoring system, Nagios, and the standard
FreeBSD periodic scripts on core systems. Ganglia
was ported to FreeBSD previously, but we have cre-
ated FreeBSD ports which make it easier to install
and make its installation more BSD-like. We have
also rewritten most of the FreeBSD specific code so
that it is effectively at feature parity with Linux (and
better in some cases). A major advantage of Ganglia
is that no configuration is required to add nodes. They
are automatically discovered via multicast. We have
also deployed Nagios with a number of standard and
custom scripts. With Nagios notification we typically
see problems with nodes before our users do.

3.10 Physical System Management

At some point in time, every system administrator
finds that they need to access the console of a machine
or power cycle it. With just a few machines, installing
monitors on each machine or installing a KVM switch
for all machines and flipping power switches manually
is a reasonable option. For a large cluster such as Fel-
lowship, more sophisticated remote management sys-
tems are desirable.

In Fellowship’s architecture, we place a strong empha-
sis on remote management. The cluster is housed in
our controlled access data center, which makes physi-
cal access cumbersome. Additionally, the chief archi-
tect and administrator lives around 1500 miles (about
2400 kilometers) from the data center, making direct
access even more difficult. As a result, we have in-
stalled remote power controllers on all nodes are core
systems and remote KVM access to all core systems.
Initially we had also configured all nodes to have se-
rial consoles accessible through terminal servers. This
worked well for FreeBSD, but we had problems with
hangs in the BIOS redirection on the Pentium III sys-
tems which forced us to disable it. That combined
with the fact that we rarely used the feature and the
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$100 per port cost lead us to discontinue the purchase
of per-rack terminal servers when we built the sec-
ond row of racks. One recent change we have made is
adding a per-rack 1U KVM unit in newer node racks.
At around $650/rack they are quite cost effective and
should save significant administrator time when diag-
nosing failures.

In the future we would like to look at using IPMI to
provide remote console and reboot for nodes eliminat-
ing the need for dedicated hardware.

3.11 Form Factor

The choice of system form factor is generally a choice
between desktop systems on shelves, rack mounted
servers, and blade systems. Shelves of desktops are
common for small clusters as they are usually cheaper
and less likely to have cooling problems. Their dis-
advantages include the fact that they take up more
space, the lack of cable management leading to more
difficult maintenance, and generally poor aesthetics.
Additionally, most such systems violate seismic safety
regulations.

Rack mounted systems are typically slightly expensive
due to components which are produced in lower vol-
umes as well as higher margins in the server market.
Additionally, racks or cabinets cost more then cheap
metal shelves. In return for this added expense, rack
mount systems deliver higher density, integrated cable
management, and, usually, improved aesthetics.

Blade systems are the most expensive by far. They
offer higher density, easier maintenance, and a neater
look. The highest density options are often over twice
as expensive with significantly lower peak performance
due to the use of special low-power components.

A minor sub-issue related to rack mount systems is
cabinets vs. open, telco style racks. Cabinets look
more polished and can theoretically be moved around.
Their disadvantages are increased cost, lack of space
making them hard to work in, and being prone to
overheating due to restricted airflow. Telco racks do
not look as neat and are generally bolted to the floor,
but they allow easy access to cables and unrestricted
airflow. In our case, we use vertical cable management
with doors which makes Fellowship look fairly neat
without requiring cabinets.

The projected size of Fellowship drove us to a rack
mount configuration immediately. We planned from
the start to eventually have at least 300 CPUs, which
is pushing reasonable bounds with shelves. We had a
few problems with our initial rack confirmation. First,

Figure 6: Fellowship’s switch and patch panel racks

the use of six inch wide vertical cable management did
not leave use with enough space to work easily. We
used ten inch wide vertical cable management when
we expanded to a second row of racks to address this
problem. Second, the choice of making direct runs
from nodes to the switch resulted in too much cable
running to the switch. When we expanded to a sec-
ond row of racks we added patch panels to them and
the existing rack and moved the switch next to a new
rack of patch panels. This substantially simplified our
cabling. The patch switch and central patch panel can
be seen in Figure 6. The third problem we encountered
was that we were unable to mount some core systems
in the racks we allocated for the core systems. We
have mounted some of our core systems in a separate
cabinet as a result and plan to add a dedicated cabinet
in the future.

4 Lessons Learned

We have learned several lessons in the process of build-
ing and maintaining Fellowship. None took us com-
pletely by surprise, but they are worth covering as
they can and should influence design decisions.

The first and foremost lesson we have learned is that
with a cluster, relatively uncommon events can be-
come common. For example, during initial testing
with the Pentium III nodes we infrequently encoun-
tered two BIOS related problems: if BIOS serial port
redirection was enabled, they system would occasion-
ally hang and PXE booting would sometimes fail.
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With the console redirection, we thought we had fixed
the problem by reducing the serial ports speed to
9600 bps, but in fact we had just made it occur dur-
ing approximately one boot in 30. This meant that
every time we rebooted, we had to wait until it ap-
peared everything had booted and then power cycle
the nodes that didn’t boot. In the end we were forced
to connect a keyboard and monitor and disable this
feature. Similarly, PXE problems did not appear se-
rious and appeared resolved with one node, but with
40 nodes, they became a significant headache. In the
end we implemented the reboot hack described in the
Node Configuration Management section. In addi-
tion to these BIOS failures, we initially experienced
hardware failures, most power supplies, at nearly ev-
ery power cycle. This seemed high at first, but the
problems mostly settled out over time. With a single
machine this wouldn’t have been noticeable, but with
many machine it became readily apparent that the
power supplies were poorly manufactured. Later on
this was reinforced as at around three years of opera-
tion the nodes stared failing to POST. We eventually
concluded the problem was with due to incremental
degradation in the power supplies because the boards
worked with a new supply. After the power supplies,
the next most common component to fail has been
the hard drives. In the Pentium III nodes they were
the notorious IBM Deathstar disks which lead to a
high failure rate. In other system the failure rate
has been lower, but still significant. When we cre-
ated specifications for the the custom cases used for
the Opterons, we specified removable disks. This has
simplified maintenance significantly.

A lesson derived from those hardware failures was that
neatness counts quite a bit in racking nodes. To save
money in the initial deployment, we ran cables directly
from the switch to the nodes. This means we have a lot
of slack cable in the cable management, which makes
removing and reinstalling nodes difficult. We ended
up adding patch panels in each rack to address this
problem. Based on this experience we have considered
blades more seriously for future clusters, particularly
those where on site support will be limited. The abil-
ity to remove a blade and install a spare quickly would
help quite a bit. Thus far the increased initial cost has
out weighed these benefits, but it is something we’re
keeping in mind.

A final hardware related lesson is that near the end of
their lives, nodes may start to fail in quantity as par-
ticular components degrade systemically. The main
thing here is to keep an eye out for this happening.
When a trend becomes apparent, it may be time for
wholesale replacement rather than expending further
effort on piecemeal repairs.

#!/bin/sh
FPING=/usr/local/sbin/fping
NODELIST=/usr/aero/etc/nodes-all

${FPING} -a < ${NODELIST} | \
xargs -n1 -J host ssh -l root host $*

Figure 7: oneallnodes script

#!/bin/sh
restart_key=/home/root/.ssh/sge_restart.key
if [ -r ${restart_key} ]; then

keyarg="-i ${restart_key}"
fi
export
QSTAT=/usr/local/sge/bin/fbsd-i386/qstat
FPING=/usr/local/sbin/fping
export SGE_ROOT=/usr/local/sge
export SGE_CELL=fellowship

${QSTAT} -f | grep -- -NA- | \
cut -d@ -f2 | cut -d’ ’ -f1 | \
${FPING} -a | \
xargs -I node ssh ${keyarg} root@node

/etc/rc.d/sge restart

Figure 8: kickexecds script

We have also learned that while most HPC software
works fine on FreeBSD, the high performance com-
puting community strongly believes the world is a
Linux box. It is often difficult to determine if a
problem is due to inadequate testing of the code un-
der FreeBSD or something else. We have found that
FreeBSD is usually the cause of application problems
even when Linux emulation in involved. We have had
good luck porting applications that already support
multiple platforms to FreeBSD. There are some occa-
sional mismatches between concepts such as the idea
of “free” memory, but the work to add features such
as resource monitoring is generally not difficult and
simply requires reading manpages and writing simple
code. We hope that more FreeBSD users will consider
clustering with FreeBSD.

System automation is even more important than
we first assumed. For example, shutting down the
system for a power outage can be done remotely
due to our power controllers, but until we wrote a
script to allow automated connections to multiple con-
trollers, it required manual connections to dozens of
controllers making the process time consuming and
painful. Other examples include the need to perform
operations on all nodes, for example restarting a dae-
mon to accept an updated configuration file. To sim-
plify this we have created a simple script which han-
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dles most cases and nicely demonstrates the power of
the Unix tool model. The script, onallnodes is shown
in Figure 7. In general we find that many problems
can be solved by appropriate application of xargs and
appropriate Unix tools. For example the script in Fig-
ure 8 restarts dead SGE execution daemons on nodes.
By running this out of cron we were able to work
around the problem while working to find a solution.

In addition to the technical lessons above, we have
learned a pair of related lessons about our users. Both
are apparently obvious, but keep coming up. First,
our users (and, we suspect, most HPC users) tend to
find something that works and keep using it. They are
strongly disinclined to change their method of opera-
tion and are unhappy when forced to do so. For this
reason, we recommend that as much standard pro-
cedure as possible be developed and working before
users are introduced to the system. It also suggests
that voluntary adoption of practices will only work if
a large benefit is involved and will never completely
work. We have found this to be particularly true in re-
gards to the scheduler. Second, because our users and
domain experts3 and not computer scientists, they of-
ten maintain mental models of the cluster’s operation
that are not accurate. For example, many believe that
jobs that start immediately would inevitably complete
before jobs that start later. While this seems logi-
cal, the only way jobs could start immediately would
be for the system to be heavily over subscribed lead-
ing to substantial resource contention and thus large
amounts of unnecessary swapping and excessive con-
text switches which in turn can result in much longer
job completion times. Another example is that while
many users are interested in optimization and often
micro-optimization, they often have a mental model
of hardware the assumes no memory caches and thus
discount cache effects.

5 Thoughts on Future Clusters

To meet our users ever expanding desire for more com-
puting cycles and to improve our ability to survive
disasters, we have been investigating the creation of a
second cluster. In the process we have been in con-
sidering ways the system should be different from the
current Fellowship architecture. The main areas we
have considered are node form factor, storage, and
network interconnect.

The locations we have been looking at have been en-
gineered for cabinets so we are looking at standard 1U
nodes and blades instead of our current custom, front-

3Including real rocket scientists.

port solutions. In many regards the density and main-
tainability of blades would be ideal, but cost consid-
erations are currently driving us toward 1U systems.
The new systems will probably have at least 8 cores
in a 1U form factor though.

Due to the fact that disks are the largest source of fail-
ures in our newer machines and that most users don’t
use them, we are considering completely eliminating
disks in favor of high performance networked storage.
The aggregate bandwidth from clustered storage prod-
ucts such as those from Isilon, NetApp, and Panasas
easily exceeds that of local disk without all the nui-
sance of getting the data off the local storage at the
end. There are two issues that concern us about this
option. First, we can easily swap to network stor-
age. Second, clustered storage is fairly expensive. We
would be eliminating around $100 per node in disk
costs, but that will not be enough to buy a large quan-
tity of clustered storage. We think both of these issues
are not too serious, but they are potential problems.

The use of Gigabit Ethernet as the Fellowship inter-
connect is working, but we do have some applica-
tions like computational fluid dynamics and radiation
damage modeling where a higher bandwidth, lower la-
tency link would be more appropriate. Additionally,
our goal of moving away from having any storage on
the nodes is leading us toward an architecture which
places heavier demands on the networks. As a result
we are considering both InfiniBand and 10Gb Myrinet
interconnects.

For the most part, the other decisions in Fellowship’s
design have worked out and we think maintaining the
basic architecture would be a good idea.

6 Future Directions & Conclusions

Currently Fellowship is working well and being used to
perform important computations on a daily basis. We
have more work to do in the area of scheduling, par-
ticularly on improving response time for short jobs,
but things are working fairly well overall. Another
area for improvement is better documentation to allow
users to find what they need quickly and use the sys-
tem correctly. We have made some progress recently
with the migration of most of our documentation to a
MediaWiki based Wiki system. We hope the ease of
editing will help us write more documentation.

We are currently working with a team of students at
Harvey Mudd College to add a web based interface to
Fellowship. The interface is being built to allow users
to submit inputs for specific jobs, but is being built on
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top of tools which allow generic access to the cluster.
We hope this will allow us to attract new classes of
users.

Additionally, we have ongoing research work in the
area of job isolation to improve both the security of
jobs and the predictability of their run time. We are
looking at ways to extend the light weight virtualiza-
tion facilities of the FreeBSD jail [jail(8)] framework
to add support for stronger enforcement of job bound-
aries.

We feel that FreeBSD has served us well in providing
a solid foundation for our work and is generally well-
supported for HPC. We encourage others to consider
FreeBSD as the basis for their HPC clusters.
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Abstract

Every computer is equipped with at least a clock chip

or a general purpose device to provide a timer function.

While these timers are certainly precise enough for mea-

suring relatively short periods of time, they are not well

suited for keeping the correct time and date over a longer

period, since almost every chip drifts by a few seconds

per day. Even so called real-time clocks only approxi-

mately meet the real time.

External time sources can be used to synchronize the

local clock with a much preciser time information. Time

signals are disseminated over various systems, the best

known are the US american GPS (Global Positioning

System) and Time Signal Stations. Time signal sta-

tions are available in many countries; while the coding

schemes vary from time signal station to time signal sta-

tion, the decoding principles are similar.

This paper outlines the general problems of setting a

computers time at runtime; it will then give an overview

about time signal stations and the GPS system. In the last

sections the OpenBSD implementation is detailed.

1 Introduction

1.1 Adjusting the System Time

While receiving and decoding the time information is

comparatively simple, introducing the current time into

the computer system may be a complex task. Generally,

it is recommended to set the system time during the boot

procedure, for example as part of the startup procedure.

In this case, everything is simple and no problems will

arise. If it is, however, intended to update the system

time while the computer is running and possibly execut-

ing programs that rely on absolute time or on time inter-

vals, serious problems may occur.

There are two generally different concepts to change

the system time at runtime. The first concept gives max-

imum priority to the continuity of the time, i.e. the time

may be compressed or streched, but under no circum-

stances may a discrete time value get lost. The second

concept regards time as a sequence of time units with

fixed length which can neither be stretched nor com-

pressed, but is allowed to miss or insert a time unit.

The distinction between the two different methods is

necessary as in every environment the time must not be

changed without prior consideration of the software that

is running. Imagine a daemon program that has to start

other programs at a given time: If the continuity of the

time is broken up, a particular program may never be

started. Such software would only run properly if time

adjustment is done by stretching or compressing the time

axis.

Other software may not rely on the absolute time but

on the accuracy of the system clock (tick) rate. If, in

this case, the time is adjusted by speeding-up or slowing-

down the tick rate (i.e. stretching or compressing the

time axis), this software will fail. Such software would

only run properly if time adjustment is done just by

changing the time settings.

If both types of software simultaneously run on the

same system, the time cannot be adjusted without pro-

ducing unpredictable results. In this case, the system

time should better not be adjusted at runtime.

2 Time Signal Stations

In the following sections the focus is on time signal sta-

tions that emit official time using longwave transmitters.

2.1 Germany: DCF77

An ultra-precise time mark transmitter in Germany,

called DCF77, emits a 77.5 kilohertz signal modulated

by the encoded current time. This time signal can be

used to adjust a computer’s real-time clock and to ensure
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accurate calendar day and time of the system. An easy-

to-build receiver and decoder can be directly attached to

a free port; a special driver is needed to decode the in-

coming time information and to update the system clock

whenever needed and desired.

Principally, there are two different possibilities to syn-

chronize the system clock with the DCF77 signal. First,

the system clock can be set every time a valid time infor-

mation is received from the time-mark transmitter; sec-

ondly, the update can be done in predefined time periods,

for example every 5 minutes. Since the accuracy of the

real-time clock device is normally good enough to ensure

precise system time and date over a short time period, the

second possibility may not only suffice but also minimize

system overhead.

2.1.1 The DCF77 Timecode

The DCF77 signal not only provides a very stable fre-

quency, but is also continuously modulated with the cur-

rent date and time information. The bit codes to provide

date and time information are transmitted during the 20th

and 58th second of a minute, each bit using a 1-second

window. The transmitter signal is reduced to 30the be-

ginning of each second. This reduction lasts for 100 or

200 milliseconds to encode a bit value of 0 or 1, respec-

tively. There is no power reduction in the 59th second;

this encodes the beginning of a new minute, so that the

time information transmitted during the last minute may

be regarded as valid. In consequence, the encoded time

information has a maximum precision of one minute.

The current second can only be determined by count-

ing the bits since the last minute gap. The following

additional information is included in the DCF77 code:

daylight saving time, announcement of a leap second at

midnight for time adjustments, spare antenna usage and

others.

The DCF77 time signal station uses the following en-

coding scheme to transmit time information:
Bit 15 Call bit

Bit 16 Announcement of DST change

Bit 17-18 Indication of DST

Bit 19 Announcement of a leap second

Bit 20 Start of encoded time information

Bits 21-27 Minute

Bit 28 Parity

Bits 29-34 Hour

Bit 35 Parity

Bits 36-41 Day of month

Bits 42-44 Day of week

Bits 45-49 Month

Bits 50-57 Year

Bit 58 Parity

The time information is in German legal time, that is

UTC+1 (or UTC+2 during daylight saving time).

2.2 Switzerland: HBG

The Swiss HBG time signal stations emits the official

Swiss time on a frequency of 75 kHz from a transmit-

ter located in Prangins near Geneva. Since 2001 it uses

an encoding scheme that is compatible with the German

DCF77 station. The only difference to the DCF77 code

occurs during the first second of a minute: While there is

only one reduction of the emission power in the DCF77

signal, there are two reductions of 100 ms with a gap of

100 ms in the HBG signal. This additional reduction of

power can be used to differentiate between the two sta-

tions. During the first second of a new hour, we see three

such power reductions, at noon and midnight, even four

reductions are used.

2.3 Japan: JJY

The official japanese time is disseminated using two

longwave time signal station transmitter, one is located

on Mount Otakadoy near Fukushima and the second on

Mount Hagane on Kyushu Island. The code is different

from the Swiss and German codes and due to the lack of a

suited receiver and for obvious geographical constraints,

no driver support has yet been writte for JJY.

2.4 Connecting the Receiver

Various techniques are applicable to connect a DCF77

receiver to a computer system: The most obvious way

is to convert the two states of the amplitude to a square

wave signal, i.e. to a stream of zeroes and ones. In this

case, the length of the reduction is determined to define

the logical bit state.

A more sophisticated way that is used by most com-

mercially available receivers is to provide a data line with

the decoded time information and a separate clock line.

These lines can be used to load a shift register or to enter

the data on an input port bit using the clock line as an in-

terrupt generating strobe. A device driver is required to

read the data line and to combine the bits to the complete

time information. In this case, the time of the amplitude

reduction is measured by the receiver.

Most DCF77 receivers, however, not only provide the

data and clock line but also the undecoded square wave

signal on the clock line as additional information. This

allows for a rather unconventional, but easy, method to

both connect the receiver to the computer hardware and

decode the time information. In essence, this method is

based on interpreting the undecoded square wave signal

as if it were an RS-232 bit stream signal so that a standard

serial interface and the standard read command can be

used.
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2.4.1 Using the Serial Interface

Before the bit stream signal can be used as an RS-232 in-

put signal, the required communication parameters must

be determined and the controller be programmed accord-

ingly: The longest duration of the low state of the square

wave signal (200 ms) is taken as ten consecutive serial

bits (one start bit, eight data bits, one parity bit) each of

20ms, so that a total of 50 bits would be transfered per

second. Consequently, if the serial interface is set to 50

Baud, 8 data bits and even-parity, a 20ms section of the

square wave signal represents one bit in the controllers

input byte; the first 20ms section, however, is not consid-

ered since it is interpreted as a start bit.

_ ___________________________

|_|_|_|_|_|_|_|_|_|_|_|_|

Serial data format

S 0 1 2 3 4 5 6 7 8 P S

_ ___________________

|_________| Transmitting a 0 bit (100ms)

_ _______

|_____________________|

Transmitting a 1 bit (200ms)

A logical 0 is encoded from the time signal station

as a low-level pulse of 100 ms duration and therefore

causes the serial controller’s input byte to contain binary

11110000 (hexadecimal F0). A logical 1 encoded as a

200 ms low-level pulse simply causes an input byte of 0.

The only hardware requirement to connect the square

wave signal from the DCF77 receiver to a serial RS-232

port of a computer is a TTL-to-V.24 level shifter. Only

the receive data (RxD) and ground (GND) pins are used,

all other pins remain unused.

2.5 Decoding the Time
The very low level functions do nothing more than col-

lecting the time bits and storing them in an appropriate

structure. As the low-level interface may need to syn-

chronize with the DCF77 transmitter, it cannot be ex-

pected to return very quickly. Under worst-case condi-

tion, i.e. if the function is entered just after the first bit

has been transmitted, it may take up to two minutes until

the function has completely collected the time informa-

tion.

2.5.1 Collecting the Bits

There is, however, still a problem when using the serial

interface to decode the time information. This problem

is due to the evaluation of the parity bit. Both input byte

values, hexadecimal F0 and 0, would need the parity bit

to have the even (high level) state. This is alright in the

first case; but in the second case (200 ms low-level state),

the input signal has still low-level when the parity bit is

expected so that a parity error is generated. The decoding

routine has, therefore, to consider this condition.

2.5.2 The Decoding Algorithm

At any time the decoder is started, it must synchronize

with the DCF77 time signal station. To do so, it waits for

a delay between two bits that is significantly longer than

one second, e.g. 1.5 seconds.

After this prolonged gap, the next bit to receive is bit

zero of the subsequent time information packet. The al-

gorithm then picks up the bits until all 59 data bits are

collected. In case the algorithm falls out of synchroniza-

tion and misses some bits, perhaps due to bad reception

of the radio signal, it detects the data loss by the time

elapsed between two bits which must not be more than

one second. In this case, the algorithm synchronizes with

the DCF77 signal again and restarts.

Once the complete time information is received, it is

immediately decoded and marked valid as soon as bit 0

of the following minute starts. The time obtained can

then be used to adjust the system time.

If the time decoding function is re-entered within

less than one second interval, it does not need to re-

synchronize. In this case, the function waits for the next

data bit and stores it. In consequence, such a function

needs at least two minutes only for the first call; if, how-

ever, called at regular and short intervals, the function

returns after about one second so that, for example, a

display can continuously be updated.

2.6 We Are Always Late

The method described above to decode the DCF77 data

bits has one disadvantage: We are always late. When the

read function returns, indicating that a new second just

started, we are already late for 100 or 200 milliseconds

which is the time that is needed to transmit the data bit.

This delay must be taken into consideration when the ex-

act time of the starting of a new second is needed.

3 GPS

The American Global Positioning System, or GPS for

short, works completely different than time signal sta-

tions and its primary purpose is not the dissemination of

time, but accurate three-dimensional position informa-

tion all over the world. To determine the exact position

with the help of satellites, very high presion timing is

used. This makes the GPS system a very interesting op-
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tion to receive time information: It is available globally

and it inherently carries very precise time information.

GPS receivers can be very cheap and are available as

USB connected devices, serially attached receivers, even

PC-Card or CF attached devices exist.

Professional GPS receivers are available as PCI

cards, e.g. from the German manufacturor Meinberg

Funkuhren.

OpenBSD currently has support for GPS in the

nmea(4) and mbg(4) codes which are described in the

following section.

4 OpenBSD Implementation

All time signal stations use their own code. All have

some properties of their own, like the announcement of

leap seconds or the announcement of a daylight saving

time change in the DCF77 code. Time is encoded in

a local timezone for most stations. In consequence, all

drivers that decode a particular time signal station code

should follow a common, yet minimal, protocol: Report

the time in coordinated universal time (UTC), not the lo-

cal time.

4.1 The Sensor Framework

OpenBSD has a sensor framework with sensors being

read-only values that report various environmental values

like CPU temparature, fan speeds or even acceleration

values if the computer is equipped with accelerometers.

Sensor values can be read using the sysctl(8) interface

from the commandline or in userland programs.

To support radio clocks, a new type of sensor has been

introduced, the timedelta sensor that reports the error (or

offset) of the local clock in nanoseconds. A radio clock

device driver provides a timedelta sensor by comparing

the local time with the time information received.

A userland daemon like ntpd(8) can then pick up this

time information and adjust the local clock accordingly.

Timedelta sensors not only report the error of the lo-

cal clock, but they also have a timestamp value indicating

when exactly the last valid time information has been de-

coded and a status flags indicating the quality of the time

information. Initially, this status is set to UNKNOW, it

will then change to OK once proper time information has

been received. Some radio clock drivers, e.g. udcf(4),

will degrade to the WARNING state if not valid time in-

formation has been recived for more than 5 minutes. If

not time is received for a longer period, the state will

eventually degrade to ERROR.

4.2 udcf(4)

During the development the actual driver implementa-

tion, I have used various Expert mouseCLOCK devices

manufactured in Germany by Gude Analog und Digital

Systeme.

The Expert mouseCLOCK USB and the Expert

mouseCLOCK are inexpensive devices available in sev-

eral variations. They can be interfaced serially or using

USB and decode either the German DCF77 station, the

Swiss HBG station, or the British MSF time signal sta-

tion.

Although the serial devices use standard V.24 signal

levels, they are not serial devices in the usual sense. They

use the signal pins to provide a serial stream of bits that

can be decoded with the method outlined above.

The USB attached devices interestingly contain an

ISDN controller with USB interface that controls the re-

ceiving part using auxillary ports of the ISDN controller.

The implemented driver, udcf, attaches to a uhub de-

vice. When the device is plugged in to a USB hub, the

driver programs the device to provide power to the re-

ceiver part. It then sets up a timer in 2000 ms to let the

receiver stabilize. When this timer expires, the driver

starts its normal operation by polling the device over the

USB bus for the falling edge of the signal in a tight loop.

Once the falling edge is detected, this fast polling stops

and a set of four timers is used to decode the signal.

When the device is removed from the USB hub, all

timers are stopped.

On the falling edge of the signal, i.e. at the beginning

of a second, fast polling is stopped and some timers are

started using timeout(9). Any pending timers are first

reset using timeout del(9).

The first timer expires in 150 ms. Its purpose is to de-

tect the bit being transmitted. The current signal level is

measured — if the low power emission was 100 ms long,

we have a high level again;, if it is a 200 ms emission, we

still have a low level. The bit detected is stored.

The second timer expires in 250 ms and is used to de-

tect if we decode the German DCF77 or the Swiss HBG

signal.

The third timer expires in 800 ms. It is used to restart

fast polling over the USB bus to detect the falling edge of

the signal at the start of the next second. Note that there

might not be a falling edge for more than one second dur-

ing the minute gap after the 58th second. This situation

is detected using a third timer.

The fourth timer expires in 1500 ms after the falling

edge. When it expires, we have detected the 59th second.

Note that this timer will not expire during seconds 0-58

as all timers are reset when the falling edge is detected

using the fast polling loop.

In the 59th second we decode and validate the com-
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plete time information just received and at the beginning

of the next second we stamp the time information with

microtime(9) and mark it as valid. A userland program

can get at this information and knowing the received time

information and the exact system time when it was valid,

the userland program can calculate the exact time.

The fifth timer expires in 3000 ms. If it ever expires,

we have lost reception. We set an error bit and stop the

whole decoding process for some time.

The four timers need not be very precise (10% toler-

ance is very acceptable) - the precision of the time decod-

ing is solely determined by the detection of the falling

edge at the start of a second. All means should be taken

to make this detection as precise as possible.

When the algorithm is started we do not know in

which second we are, so we first must synchronize to the

DCF77 signal. This is done by setting the state to syn-

chronizing, in which we don’t store the bits collected,

but rather wait for the minute gap. At the minute gap, the

state is changed from synchronizing to receiving. When-

ever we lose reception or time information gets invalid

for other reasons, we fall back to the synchronizing state.

4.2.1 Using Interrupts

The driver described above is very easy to use. But it has

limitations as polling over the USB bus has to be done

to detect the falling edge at the beginning of a second. It

is basically this polling loop that limits the precision of

the time information. Higher precision can be obtained

when the falling edge of the signal causes an interrupt.

No polling is needed then and the decoding driver needs

only some slight adjustments.

When the falling edge is detected, further interrupts

from the device are disabled and the second timer, used

to restart fast polling in the udcf driver, is used to reen-

able interrupts from the time signal receiver, thus de-

bouncing the signal.

The serial versions of the time signal receivers can be

rather easily used to generate these interrupts. Instead of

using the standard wiring, the data line that provides the

signal level is attached to an interrupt generating pin of

the serial port.

The default serial driver must of course be disabled

and the time signal station driver must program the

UART accordingly.

4.3 nmea(4)
To use GPS receivers as time source, nmea(4) has been

added to OpenBSD. Unlike the other implementations

presented in this paper, nmea(4) is not a device driver,

but a tty line discipline. A tty line discipline consists

of a set of functions that are called by the tty driver on

events like a character has been received, a character is

to be sent etc. Thus a line discipline can look at (and

manipulate) a serial data stream on a tty device.

The purpose of the nmea(4) line discipline is to de-

code a serial NMEA 0183 data stream originating from

an attached GPS device. NMEA is rather simple, ASCII

based protocols where a NMEA speaking device emits

so called sentences that always start with a $ character

and extend to a CR-LF pair. No sentence is longer than

82 characters and there is an optional checksum. To de-

code the time information, it is sufficied to decode the

GPRMC sentence, the ”Recommended Minimum Soe-

cific GPS/TRANSI Data”.

nmea(4) supports all GPS devices that emit NMEA

sentences and that attach to a serial port of some sort

(RS-232, USB, or PC-Card).

There is a problem, however, with simply decoding the

NMEA sentence. We have no indication when exactly

the time information just received was actually valid.

The nmea(4) line discipline takes a local timestamp when

it receives the initial $ character and uses this timestamp

as the base for the calculation of the local clock offset.

This automatically leads to jitter but nevertheless this

method gives us accurate date and time information.

4.3.1 TTY Timestamping

To address this problem, tty timestamping has been

added to the OpenBSD tty driver.

Some GPS receivers provide a highly accurate pulse-

per-second, PPS, signal. A PPS signal typically has mi-

crosecond accuracy and with PPS enabled, the GPRMC

sentence indicates the time (and position) of the last PPS

pulse. So if we can measure the exact local time when

the pulse occurs, we can later, when we received the

GPRMC sentence, calculate the local offset with very

high precision.

This is done in the tty driver when tty timestamping

is enabled. Once enabled, the tty driver will take a lo-

cal timestamp at the very moment the PPS signal oc-

curs (which must be wired to the serial ports RTS or

DCD line). The nmea(4) line discipline will then use

this timestamp as the base for its calculations once the

GPRMC sentence is received.

To attach the nmea(4) line discipline to a tty device,

the utility program nmeaattach(8) can be used which can

also enable tty timestamping.

Userland programs that want to use the NMEA data as

well can do so as nmea(4) does not consume the data, it

only looks at it. So with the proper setup, a general GPS

software like gpsd can be used to do whatever you want

with e.g. the position data while the running kernel just

uses the time information to keep the clock adjusted.
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4.4 mbg(4)
The mbg(4) driver for radio-clocks supports the

professional radio-clocks manufactured by Meinberg

Funkuhren in Bad Pyrmont, Germany. Meinberg pro-

duces a range of industrial grade receivers for the Ger-

man DCF77 time signal station and the global GPS sys-

tem. All cards have a local real-time clock that can be

free-running on a local oscillator, which on request is

temperature compensated.

The mbg(4) currently supports the PCI32 and PCI511

DCF77 receiver cards and the GPS170 GPS receiver

card. All cards provide the exact time information which

is available to the driver at any time, plus status informa-

tion.

Especially with the newer cards PCI511 and GPS170

a very high precision can be achieved, as these cards take

the internal timestamp at the very moment the first com-

mand byte is written to the card over the PCI bus. The

mbg(4) driver uses a very small critical section, protected

by splhigh(9), to first take the local timestamp and then

send the command to the card. The critical section is im-

mediately left and the driver waits then for the card to

return the time information.

Using a kernel timeout(9), the card is queried for time

information every ten seconds.

As of the time of this writing, the mbg(4) driver is still

under active development, so we expect to achieve higher

precision with this driver in the future.

5 Conclusion

With the advent of timedelta sensors, tty timestamping

and the drivers presented in this paper, OpenBSD now

has complete support for precise time acquisition, keep-

ing and distribution.

The elegant concept of timedelta sensors, an idea by

Theo de Raadt, provides a very thin layer of abstraction

that allows to provide time information in a uniform way

to the sytem from devices as different as a time signal

station receiver that is polled over the USB bus to a PCI

based GPS receiver card.

The OpenNTPD daemon ntpd(8) can then be used to

distribute the time information in the network.

All this makes OpenBSD an ideal platform for time

servers.
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ABSTRACT

Fault tolerant and secure operating systems are a worthwhile goal. A known
method for accomplishing fault tolerance and security is isolation. This means running
separate operating system services in separate protection domains so that they cannot
interfere with each other, and can communicate only via well-defined messaging inter-
faces. Isolation and message passing brings inherent overhead when compared to ser-
vices doing communication by accessing each others memory directly. To address this,
the ultimate goal would be to be able to run the kernel subsystems in separate domains
during development and testing, but have a drop-in availability to make them run in ker-
nel mode for performance critical application scenarios. Still today, most operating sys-
tems are written purely with C and some assembly using the monolithic kernel approach,
where all operating system code runs within a single protection domain. A single error in
any subsystem can bring the whole operating system down.

This work presents puffs - the Pass-to-Userspace Framework File System - shipped
with the NetBSD Operating System. It is a framework for implementing file systems out-
side of the kernel in a separate protection domain in a user process. The implementation
is discussed in-depth for a kernel programmer audience. The benefits in implementation
simplicity and increased security and fault tolerance are argued to outweigh the measured
overhead when compared with a classic in-kernel file system. A concrete result of the
work is a completely BSD-licensed sshfs implementation.

Keywords: userspace file systems, robust and secure operating systems, message-passing
subsystems, BSD-licensed sshfs

1. Introduction

"Microkernels have won", is a famous
quote from the Tanenbaum - Torvalds debate from
the early 90’s. Microkernel operating systems are
associated with running the operating system ser-
vices, such as file systems and networking proto-
cols, in separate domains, and component com-
munication via message passing through channels
instead of direct memory references. This is
known as isolation and provides an increase in
system security and reliability in case of a misbe-
having component [1]; at worst the component
can corrupt only itself instead of the entire sys-
tem. However, most contemporary operating sys-
tems still run all services inside a single

protection domain with the popular argument
being an advantage in performance. Even if we
were to disregard research which states that the
performance difference is irrelevant [2], we might
be willing to make a tradeoff for a more robust
system.

A separate argument is that we do not need
to see issues only in black-and-white. An operat-
ing system’s core can be monolithic with the
associated tradeoffs, but offer the interfaces to
implement some services in separate domains.
An HTTP server or an NFS server can be imple-
mented either as part of the monolithic kernel or
as a separate user process, even though they both
have their "correct" locations of implementation.
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There is obviously room for both a microkernel
and a monolithic kernel approach within the same
operating system. Another relevant argument is
the use of inline assembly in an operating system:
almost everyone agrees that it is wrong, yet not
using it makes the system less performant.
Clearly, performance is not everything.

This work presents puffs, the Pass-To-
Userspace Framework File System for NetBSD.
puffs provides an interface similar to the kernel
virtual file system interface, vfs [3], to a user
process. puffs attaches itself to the kernel vfs
layer. It passes requests it receives from the vfs
interface in the kernel to userspace, waits for a
result and provides the caller with the result.
Applications and the rest of the kernel outside of
the vfs module cannot distinguish a file system
implemented on top of puffs from a file system
implemented purely in the kernel. For the
userspace implementation a library, libpuffs, is
provided. libpuffs not only provides a program-
ming interface to implement the file system on,
but also includes convenience routines commonly
required for implementing file systems.

puffs is envisioned to be a step in moving
towards a more flexible NetBSD operating sys-
tem. It clearly adds a microkernel touch with the
associated implications for isolation and robust-
ness, but also provides an environment in which
programming a file system is much easier than
compared to the same task done in the kernel.
And instead of just creating a userspace file sys-
tem framework, the lessons learned from doing so
will be turned upside down and the whole system
will also be improved to better facilitate creating
functionality such as puffs. The latter part, how-
ev er, is out of the scope of this paper.

Related Work

There are several other packages available
for building file systems in userspace. When this
project was begun in the summer of 2005, the
only option available for BSD was nnpfs, which is
supplied as part of the Arla [4] AFS implementa-
tion. Arla is a portable implementation of AFS.
It relies on a small kernel module, nnpfs, which
attaches to the host operating system’s kernel and
provides an interface for the actual userspace AFS
implementation to talk to. A huge drawback was
that at the time it only supported caching on a file
level. Since, it has developed block level caching
and some documentation on how to write file sys-
tems on top of it [5].

The best known userspace file system
framework is FUSE, Filesystem in USErspace
[6]. It supports already hundreds of file systems
written against it. On a technical level, puffs is
fairly similar to FUSE, since they both export
similar virtual file system interfaces to userspace.
However, the are differences already currently in,
for example, pathname handling and concurrency
control. The differences are expected to grow as
the puffs project reaches future goals. Even so,
providing a source compatible interface with
FUSE is an important goal to leverage all the
existing file systems (see Chapter 5). In the sum-
mer of 2005 FUSE was available only for Linux,
but has since been ported to FreeBSD in the
Fuse4BSD [7] project. A derivate project of the
FreeBSD porting effort, MacFUSE [8], recently
added support for Mac OS X. A downside from
the BSD point-of-view is that userspace library
for FUSE is available only under LGPL and that
file systems written on top of it have a tendency
of being GPL-licensed.

Apart from frameworks merely exporting
the Unix-style vfs/vnode interface to userspace
for file system implementation, there are systems
which completely redesign the whole concept.
Plan 9 is Bell Labs’ operating system where the
adage "everything is a file" really holds: there are
no special system calls for services like there are
on Unix-style operating systems, where, for
example, opening a network connection requires a
special type of system call. Plan 9 was also
designed to be a distributed operating system, so
all the file operations are encoded in such a way
that a remote machine can decode them. As a
roughly equivalent counterpart to the Unix virtual
file system, Plan 9 provides the 9P [9] transport
protocol, which is used by clients to communicate
with file servers. 9P has been adapted to for
example Linux [10], but the greater problem with
9P is that it is relatively different from the
(Net)BSD vfs interface and it makes some
assumptions about file systems in general not
valid on Unix [10]. Therefore, it was not directly
considered for the userspace library interface.

DragonFly BSD has started putting forth
effort in creating a VFS transport protocol, which,
like 9P, would be suitable for distributed environ-
ments in which the server can exist on a different
network node than the client [11]. It is also
usable for implementing a file system in
userspace, but is a huge undertaking and restruc-
tures much of the kernel file system code.
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The main reason for writing a framework
from scratch is that the ultimate goal of the work
is not to develop a userspace file system frame-
work, but rather to improve the flexibility and
robustness of the operating system itself. While
taking a more flexible route such as that of 9P
may eventually prove to be the right thing to do, it
is easier to take n small steps in reaching a goal
and keep the system functional all the time. Cur-
rently, especially the kernel side of puffs is very
lightweight and tries to be a good kernel citizen in
not modifying the rest of the kernel. The ultimate
goal is to gradually change this in creating a more
secure and reliable operating system.

Paper Contents

Chapter 2 discusses the architecture and
implementation of puffs on an in-depth technical
level. Chapter 3 presents a few file systems built
on top of puffs. It discusses experiences in devel-
oping them. Chapter 4 presents performance
measurements and analyses the measured results.
Chapter 5 contains work being done currently and
outlines some future visions for development.
Finally, Chapter 6 provides conclusions.

2. puffs Architecture

puffs is made up of four separate compo-
nents (see figure):

1. VFS attachment, including virtual mem-
ory subsystem and page cache integra-
tion. This part interfaces with the kernel
and makes sure that the kernel correct-
ness is enforced. (Chapter 2.1.)

2. Messaging interface, which transports
requests to and from the file system
server. (Chapter 2.2.)

3. A user level adaption library, libpuffs,
which handles the details of the kernel
communication and provides supporting
routines. (Chapter 2.3.)

4. The file system implementations them-
selves. (Chapter 3)

2.1. Virtual File System Attachment

Creating a new file system in the kernel is
done by attaching it to the kernel’s virtual file sys-
tem (vfs) [3] interface. As long as the file system
abides by the vfs layer’s call protocols, it is free to
provide the kind of file hierarchy and data content
it wishes.

puffs architecture

application

kernel

puffs vfs module (1)

libpuffs (3)

file server (4)

syscall

/dev/puffs (2)

user

kernel

user

The vfs layer is made up of two separate
interfaces: the actual virtual file system interface
and the vnode interface. The former deals with
calls involving file system level operations, such
as mount and unmount, while the latter always
involves an operation on a file; the vnode or vir-
tual node is an abstract, i.e. virtual, representation
of a file.

Vnodes are treated as reference counted
objects by the kernel. Once the reference count
for a vnode drops to zero, it is moved to the freel-
ist and said to enter an inactive state. However,
the file system in-memory data structures may
still hold weak pointers to the vnode at this point
and some vnode operations may prompt the file
system to attempt to rescue the vnode from the
freelist. Once a vnode is irreversibly freed and
recycled for other use, it is said to be reclaimed.
At this point a file system must invalidate all
pointers to the vnode and in-memory file system
specific data structures relating to the vnode are
also freed [12].

A very central routine for every file system
is the lookup routine in the vnode interface. This
routine takes in a pathname component and pro-
duces a vnode. It must return the same vnode for
the duration of the vnode’s lifetime, or else the
kernel could access the same file through multiple
different interfaces destroying consistency guar-
antees. puffs uses cookie values to map node
information between the kernel and the file server.
The file server selects a cookie value and

31



communicates it to the kernel upon node
creation1. The kernel checks that it was not
handed a duplicate, creates a new vnode and
stores the cookie value in the private portion of
the newly created vnode. This cookie value is
passed to the file server for all subsequent opera-
tions on the kernel vnode. A cookie → vnode
mapping is also stored in a hash list so that lookup
can later determine if it should create a new
vnode or if it should return the an existing one.

The cookie shared by the file server and
kernel is of type void *. While this is not
enough to cover all file system nodes on a 32bit
architecture, it should be recalled that the cookie
value is used only to locate an in-memory file sys-
tem data structure and is valid only from node
creation to the reclaim operation and that this
cycle is controlled by the kernel. Most file
servers will simply use the address of the in-mem-
ory data structure as the cookie value and do map-
ping from the cookie to the file server node struc-
ture with a simple pointer typecast. Even further,
this address will be that of a generic libpuffs
node, struct puffs_node, and the file sys-
tem’s private data structure can be found from the
private data pointer in struct puffs_node.
This is not required, but as we will later see when
discussing the user library, the generic node pro-
vides some additional convenience features.

For interfacing between the kernel and the
file server, the vfs layer acts as a translator
between the in-kernel representation for vfs
parameters and a serialized representation for the
file server. This part is discussed further in Chap-
ter 2.2. Additionally, the vnode portion of the vfs
attachment implements the file system side of the
vnode locking protocol.

The vfs layer also acts as a semantic police
between the kernel and the user fs server. It
makes sure that the file server does not return any-
thing which the rest of the kernel cannot handle
and would result in incorrect operation, data cor-
ruption or a crash.

Short circuiting Non-implemented Operations

All user file system servers do not imple-
ment all of the possible operations; open and
close are examples of operations commonly not
implemented at all on the vnode level. Therefore,

1 A node can be created by the following opera-
tions: lookup, create, mknod, mkdir and symlink.
The first one just creates the node, while the final
four create the backing file and the node.

unless mounted with the debug flag
PUFFS_KFLAG_ALLOPS, operations unsup-
ported by the file server will be short circuited in
the kernel. To avoid littering operations with a
check for a supported operation, the default vnode
operations vector, puffs_vnodeop_p, defines some
operations to be implemented by puffs_checkop().
This performs a table lookup to check if the oper-
ation is supported. If the operation is supported,
the routine makes a VOCALL() for the operation
from the vector puffs_msgop_p to communicate
with the file server. Otherwise it returns immedi-
ately. To make this approach feasible, the script
generating the vnode interface was modified to
produce symbolic names for the operations, e.g.
VOP_READDIR_DESCOFFSET, where they
were previously generated only as numeric val-
ues. It should be noted that all operations cannot
be directed to puffs_checkop(), since e.g. the
reclaim operation must do in-kernel bookkeeping
regardless of if the file server supports the opera-
tion in question. These operations use the macro
EXISTSOP() to check if they need to contact the
file server or is in-kernel maintenance enough.

puffs vnode op vector

{&vop_lookup_desc, puffs_lookup },

{&vop_create_desc, puffs_checkop },

{&vop_mknod_desc, puffs_checkop },

{&vop_open_desc, puffs_checkop },

...

{&vop_reclaim_desc, puffs_reclaim },

{&vop_lock_desc, puffs_lock },

{&vop_unlock_desc, puffs_unlock },

Kernel Caching

Caching relatively frequently required
information in the kernel helps reduce roundtrips
to the fs server, since operations can be short cir-
cuited already inside the kernel and cached data
provided to the caller. Caching is normal behav-
ior even for in-kernel file systems, as disk I/O is
very slow compared to memory access.

The file system cache is divided into three
separate caches: the page cache, the buffer cache
and the name cache. The page cache [13] is a fea-
ture of the virtual memory subsystem and caches
file contents. This avoids reading the contents of
frequently used files from the backing storage.
The buffer cache in turn [12,14] operates on disk
blocks and is meant for file system metadata. The
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name cache [12,15] is used to cache the results of
the lookup from pathname to file system node to
avoid the slow path of the frequent
VOP_LOOKUP() operation.

To avoid doing expensive reads from the
file server each time data is accessed, puffs uti-
lizes the page cache like any other file system
would. Additionally, it provides the file server
with an interface to either flush or invalidate the
page cache contents for a certain file for a given
page range. These facilities can be used by file
servers which use backends with distributed
access. Since puffs does not operate on a block
device in the kernel, it does not use the buffer
cache at all. However, caching metadata is advan-
tageous [16] even if it is not backed up by a block
device. Support for caching metadata in the ker-
nel is planned in the near future. Finally,
puffs uses the name cache as any other file system
would, but additionally provides the file server
with a method to invalidate the name cache either
on a per-file basis, per-directory basis or for the
entire file system.

2.2. User-Kernel Messaging Interface

Messaging between the kernel and file
server is done through a character device. Each
file server opens /dev/puffs at mount time
and the communication between the file server
and kernel is done through the device. The only
exception is mounting the file system, for which
the initial stage is done by the file server by call-
ing the mount() system call. Immediately when
the device descriptor is closed the file system is
forcibly unmounted in the kernel, as the file
server is considered dead. This is an easy way to
unmount a misbehaving file system, although nor-
mally umount should be preferred to make sure
that all caches are flushed.

VFS and Vnode Operations

All vfs and vnode operations are initiated in
the kernel, usually as the result of a process doing
a system call involving a file in the file system.
Most operations follow a query-response format.
This means that when a kernel interface is called,
the operation is serialized and queued for trans-
port to the file server. The calling kernel context
is then put to sleep until a response arrives (or the
file system is forcibly unmounted). However,
some operations do not require a response from
the file server. Examples of such operations are
the vnode reclaim operation and fsync not called

with the flag FSYNC_WAIT. These operations
are enqueued on the transport queue after which
the caller of the operation continues executing.
puffs calls these non-blocking type operations
Fire-And-Forget (FAF) operations.

Before messages can be enqueued, they
must be transformed to a format suitable for
transport to userspace. The current solution is to
represent parameters of the operation as structure
members. Some members can be assigned
directly, but others such as struct compo-
nentname must be translated because of point-
ers and other members the userland does not have
direct access to. Currently all this modifying is
done manually for each operation, but it is hoped
that this could be avoided in the future with an
operation description language.

Transport

As mentioned above, the format of mes-
sages exchanged between the kernel and file
server is defined by structures. Every request
structure is subclassed from struct
puffs_req, which in C means that every struc-
ture describing a message contains the aforemen-
tioned structure as its first member. This member
describes the operation enough so that it can be
transported and decoded.

puffs_req members

struct puffs_req {

uint64_t preq_id;

union u {

struct {

uint8_t opclass;

uint8_t optype;

void *cookie;

} out;

struct {

int rv;

void *buf;

} in;

} u;

size_t preq_buflen;

uint8_t preq_buf[0]

__aligned(ALIGNBYTES+1);

};

The messaging is designed so that each
request can be handled by in-place modification
of the buffer. For most operations the request
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structures contain fields which should be filled,
but the operations read and readdir may return
much more data so it is not sensible to include
this space in the structure. Conversely, write does
not need to return all the data passed to userspace.

puffs_vnreq_read/_write

struct puffs_vnreq_readwrite {

struct puffs_req pvn_pr;

struct puffs_cred pvnr_cred;

off_t pvnr_offset;

size_t pvnr_resid;

int pvnr_ioflag;

uint8_t pvnr_data[0];

};

When querying for requests from the ker-
nel, the file server provides a pointer to a flat
buffer along with the size of the buffer. The ker-
nel places requests in this buffer either until the
next operation would not fit in the buffer or the
queue of waiting operations is empty. To facili-
tate in-place modification for operations which
require more space in the response than in the
query (read, readdir), the kernel leaves a gap
which can fit the maximal response.

This solution, however, is suboptimal. It
was designed before the continuation framework
(see Chapter 2.3) and does not take into account
that the whole flat buffer is not available every
time a query is made. The currently implemented
workaround is to memcpy() the requests from the
buffer into storage allocated separately for the
processing of each operation. To fix this, the
query operation will eventually be modified to use
a set of buffers instead of one big buffer.

Responses from the user to the kernel use a
scatter-gather type buffering scheme. This facili-
tates both operations which return less or more
data than what was passed to them by the kernel
and also operations which do not require a
response at all. To minimize cross-boundary copy
setup costs, the ioctl argument structure contains
the address information of the first response. The
puffs_req in the first response buffer contains
the information for the second response buffer
and so forth. This way only one copyin is needed
per buffer instead of one for the header describing
how much to copy from where and one for the
buffer itself.

Snapshots

puffs supports building a snapshotting file
system. What this means is that it supports the
necessary functionality to suspend the file system
temporarily into a state in which the file system
server code can take a snapshot of the file sys-
tem’s state. Denying all access to the file system
for the duration of taking the snapshot is easy:
the file system server needs only to stop process-
ing requests from the kernel. This is because,
unlike in the kernel, all requests come through a
single interface: the request queue. However, the
problem is flushing all cached data from the ker-
nel so that the file system is in a consistent state
and disallowing new requests from entering the
request queue while the kernel is flushing the
information.

NetBSD provides file system suspension
routines [17] for implementing suspending and
snapshotting a file system within the kernel.
These helper routines are designed to block any
callers trying to modify the file system after sus-
pension has begun and before all the cached infor-
mation has been flushed. Once all caches have
been flushed, the file system enters a suspended
state where all writes are blocked. After a snap-
shot has been taken, normal operation is resumed
and blocked writers are allowed to continue. Note
that using these synchronization routines is left up
to the file system, since generic routines cannot
know where the file system will do writes to
backing storage and where not.

puffs utilizes these routines much in the
same fashion as an in-kernel file systems would.
A file server can issue a suspend request to the
kernel module. This causes the kernel vfs module
to block all new access to the file system and flush
all cached data. The kernel uses four different
operations to notify the file server about the
progress in suspending the file system. First,
PUFFS_SUSPEND_START is inserted at the end
of the operations queue to signal that only flush-
ing operations will be coming from this point on.
Second, when all the caches have been flushed,
PUFFS_SUSPEND_SUSPENDED is issued to
signal that the kernel is now quiescent. Note that
at this point the file system server must still take
care that it has completed all operations blocked
with the continuation functionality or running in
other threads and can only then proceed to take a
clean snapshot. Finally, the kernel issues an
explicit PUFFS_SUSPEND_RESUME, even
though it always follows the suspend notification.
In case of an error while attempting to suspend,
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the kernel issues PUFFS_SUSPEND_ERROR.
This also signals that the file system continues
normal operation from the next request onwards.

2.3. User Level Library

The main purpose of the user library,
libpuffs, is to take care of all details irrelevant for
the file system implementation such as memory
management for kernel operation fetch buffers
and decoding the fetched operations.

The library offers essentially two modes of
operation. The file server can either give total
control to the library by calling puffs_mainloop(),
or invoke the library only during points it chooses
to with the puffs_req family of functions. The
former is suited for file systems which handle all
operations without blocking while the latter is
meant for file systems which need to listen multi-
ple sources of input for asynchronous I/O pur-
poses. Currently, the library does not support a
programming model where the library issues a
separate worker thread to handle each request.

Interface

The current puffs library interface closely
resembles the in-kernel virtual file system inter-
face. The file server registers callbacks to the
library for operations and these callbacks get
executed when a request related to the callback
arrives from the kernel.

For file system operations, only three oper-
ations from vfsops are exported: sync, statvfs and
unmount. The sync callback is meant to signal
the file server to synchronize its state to backing
storage, statvfs is meant to return statistics about
the file system, and unmount tells the file server
that the kernel has requested to unmount the file
system. The user server can still fail an unmount
request which was not issued with MNT_FORCE.
The kernel will respect this.

The operations dealing with file system
nodes are greater in number, but some operations
are missing when compared to the kernel vnode
interface. For example, the kernel uses
VOP_GETPAGES() and VOP_PUTPAGES() for
integration with the virtual memory subsystem2

and as a backend for VOP_READ() and

2 In NetBSD, file system read and write are com-
monly implemented as uiomove() on a kernel mem-
ory window. getpages is used to bring file data into
memory while putpages is used to flush it to stor-
age. This is how the file data is cached into the
page cache and written from it.

VOP_WRITE() on most file systems. However,
since puffs userspace file servers do not integrate
into the kernel virtual memory subsystem, they do
not need VOP_GETPAGES() and VOP_PUT-
PA GES() and can simply make do with read and
write.

The parameters for the node operations fol-
low in-kernel vnode operations fairly closely.
Operations are given an opaque library call con-
text pointer, pcc, and the operation cookie, opc,
which the file server can use to find its internal
data structure. The meaning of the operation
cookie depends on each operation, but it is either
the directory which the operation affects or the
node itself if the operation is not a directory oper-
ation. For example, in the signature of rmdir, the
operation cookie is the cookie of the directory
from which the file is supposed to be removed
from, targ is the cookie of the node to be
removed and pcn describes the directory entry to
remove from the directory.

puffs_node_rmdir

int

node_rmdir(struct puffs_cc *pcc,

void *opc, void *targ,

const struct puffs_cn *pcn);

Full descriptions of each operation and involved
parameters can be found from the puffs manual
pages [18].

Filenames and Paths

The kernel vnode layer has only minimal
involvement with file names. Most importantly,
the vnode does not contain a pathname. This has
several benefits. First, it avoids confusion with
hardlinks where there are several pathnames refer-
ring to a single file. Second, it makes directory
rename a cheap operation, since the pathnames of
all nodes under the given directory do not need to
be modified. Only operations which require a
pathname component are passed one. Examples
are lookup, create and rmdir. The latter two
require the pathname component to know what is
the name of the directory entry they should mod-
ify.

However, most file system backends oper-
ate on paths and filenames. Examples include the
sftp backend used by psshfs and the puffs null
layer (discussed further in Chapter 3.1). To
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facilitate easier implementation of these file sys-
tems, puffs provides the mount flag
PUFFS_FLAG_BUILDPATH to include full
pathnames3 in componentnames passed to inter-
face functions as well as store the full path in
struct puffs_node for use by the file
server. In addition to providing automatic support
for building pathnames, puffs also provides hooks
for file systems to register their own routines for
pathname building in case a file system happens
to support an alternative pathname scheme. An
example of this is sysctlfs (Chapter 3.1), which
uses sysctl MIB names as the pathnames stored in
struct puffs_nodes. This alternate scheme
helps keep pathnames in the same place as other
file systems, but it requires some extra effort from
the file system: the file system must itself com-
plete the path in routines such as lookup after it
figures out its internal representation for the path-
name component; file systems based on "regular"
pathnames do not require this extra burden.

The advantage of having pathnames as an
optional feature provided by the framework is that
file servers implemented more in the style of clas-
sical file system do not need to concern them-
selves unnecessarily with the hassle of dealing
with pathnames, and yet backends which require
pathnames have then readily available. The
framework also handles directory renames and
modifies the pathnames of all child nodes of a
renamed directory.

Continuations

libpuffs operates purely as a single threaded
program. The question between the preference
for an event loop or multiple threads is mostly an
open question and the conscious decision was to
in no way bias the implementation in such a fash-
ion that threading with all its uncertainties [19]
would be required to create a working file system
which does not block while waiting for operations
to complete.

The puffs solution is to provide a continua-
tion framework in the library. Multitasking with
continuations is like multitasking with coopera-
tive threads: the program must explicitly indicate
scheduling points. In a file system these schedul-
ing points are usually very clear and similar to the
kernel: a yield happens when the file system has
issued an I/O operation and starts waiting for the
result. Conversely, a continue is issued once the
result has been produced. This also bears

3 "full" as in "starting from the mount point"

resemblance to how the in-kernel file systems
operate (ltsleep()/wakeup() and the buffer cache
operations biowait()/biodone()) and should pro-
vide a much better standing point for running
unmodified kernel file systems under puffs than
relying on thread scheduling.

puffs continuation operation

ev ent
loop

puffs
req_handle()

function 1

function 2

1.

2.

3.

4.
yield()

n+1.
continue()

n+2.

n+3.

n+4.

The programming interface is extremely
simple. The library provides an opaque cookie,
struct puffs_cc *pcc, with each interface
operation. The file system can put itself to sleep
by calling puffs_cc_yield() with the cookie as the
argument and resume execution from the yield
point with puffs_cc_continue(). Before yielding,
the file system must of course store the pcc in its
internal data structures so that it knows where to
continue from once the correct outside event
arrives. This is further demonstrated in the above
figure and also Chapter 3.1, where the puffs ssh
file system is discussed.

However, since the worker thread model is
useful for example in situations where the file sys-
tem must call third party code and does not have a
chance to influence scheduling points, support for
it will likely be added at some stage. Also, a file
system can be argued to be an "embarrassingly
parallel" application, where most operations,
depending slightly on the backend, can run com-
pletely independently of each other.
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3. Results and Experiences

puffs has been imported to the NetBSD
source tree. It will be featured in the upcoming
NetBSD 4.0 release as an unsupported experi-
mental subsystem. Example file systems are
shipped in source form to make it clear no binary
compatibility is going to be provided for NetBSD
4.0. Full support is planned for NetBSD 5.0.

3.1. Example File Systems

psshfs - puffs sshfs

One desired feature commonly associated
with userspace file systems is sshfs. It gives the
ability to mount a remote file system through the
sftp ssh subprotocol [20]. The most widely
known sshfs implementation is FUSE sshfs. It
was originally available only for Linux, but is cur-
rently available also for FreeBSD and Mac OS X.
However, since all the other projects use (L)GPL
licensed original FUSE code, with puffs NetBSD
is only operating system to provide a completely
BSD-licensed sshfs solution out-of-the-box.

While psshfs will be supported fully by the
ev entual release of NetBSD 5.0, NetBSD 4.0
ships with an experimental source-only simple
sshfs, ssshfs, found under share/exam-
ples/puffs/ssshfs in the source tree. The
difference between ssshfs and psshfs is that ssshfs
was written as simple glue to OpenSSH code and
cannot utilize puffs continuations. psshfs was
written completely from scratch with multiple
outstanding operations in mind.

The operational logic of psshfs is based on
an event loop and puffs continuations. The loop
is the following:

1. read and process all requests from the
kernel. some of these may enqueue out-
going network traffic and yield().

2. read input from the network, locate con-
tinuations waiting for input, issue con-
tinue() for them. if a request blocks or
finishes, continue from the next protocol
unit received from the network. do this
until all outstanding network traffic has
been processed.

3. send traffic from the outgoing queue
until all traffic has been sent or the
socket buffer is full.

4. issue responses to the kernel for all oper-
ations which were completed during this
cycle.

psshfs operational diagram

ev ent
loop

network
output

network
input

kernel

executing
operation

waiting op

waiting op

...

readwrite

continue

continue()

yield()

handle()

enqueue

dtfs

dtfs was used for the final development of
puffs before it was integrated into NetBSD. It is a
fully functional file system, meaning that it can do
all that e.g. ffs can. The author has run it on at
least /tmp, /usr/bin and /dev of his desktop sys-
tem. For ease of development dtfs uses memory
as the storage backend. However, it is possible to
extend the file system for permanent storage by
using a permanent storage backed memory alloca-
tor, such as one built on top of mmap() with
MAP_FILE.

Development of dtfs was straightforward,
as it does what the exported kernel virtual file sys-
tem layer assumes a file system will do and it very
closely resembles the operational logic of in-ker-
nel file systems.

puffs nullfs

A nullfs [12] layer, also known in some
contexts as a loopback file system [21], is pro-
vided by libpuffs. A null or loopback layer maps
a directory hierarchy from one location to another.
The puffs nullfs is conceptually similar to the in-
kernel nullfs in that it acts as a simple
passthrough mechanism and always relays
unmodified calls the file system below it. How-
ev er, since it is implemented in the user library
instead of the kernel, it cannot simply push the
request to the next layer. Instead, it uses
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pathnames and system calls to issue requests to
the new location.

The null layer in itself is not useful, espe-
cially since NetBSD already provides a fully
functional alternative in the kernel. However, it
can be used to implement various file systems
which modify filenames or file content with very
little effort for the backend. An example of a user
of the null layer is rot13fs, which is less than 200
lines of code and even of those almost half are
involved with setting up the file system and pars-
ing command line options. rot13fs translates
pathnames and file content to rot13 for any giv en
directory hierarchy in the file system.

sysctlfs

sysctlfs was an experiment in writing a file
system which provides the storage backend
through other means than a traditional file system
block device -like solution. It maps the sysctl
namespace as a file system and supports querying
(with e.g. cat) and changing the values of integer
and string type sysctl nodes. Nodes of type
"struct" are currently not supported. Trav ersing
the sysctl namespace is possible with standard
tools such as find(1) or fts(3). sysctlfs does not
currently support dynamically adding or remov-
ing sysctl nodes. While support for the latter
would be possible, the former is problematic,
since the current file system interface exported to
processes in the form of system calls does not
provide any obvious way to specify all the infor-
mation, such as node type, required to create a
sysctl node. Non-obvious kludges such as abus-
ing mknod are possible, though.

Development was mostly done during a sin-
gle day. One of the features introduced to
puffs because of sysctlfs was the ability to instruct
the kernel vfs attachment to bypass cache for all
operations. This is useful here because re-query-
ing the information each time from sysctl(3) is
not expensive and we want changes in both direc-
tions to show up as quickly as possible in the
other namespace.

3.2. Experiences

The above clearly demonstrates that adapt-
ing a name hierarchy and associated data under
the file system interface is possible with relative
ease and in a very short time. It can be argued
that the development time was cut down greatly
due to the author’s intimate familiarity with the
system. But it must also be pointed out that some

time included in the development time was spent
tracking down generic kernel bugs triggered by
the corner-case vfs uses of userspace file systems
and that some effort was used on framework
development. Currently, the development of sim-
ple file systems should take only hours or days for
someone with a reasonable familiarity in the
problem scope.

3.3. Stability

One of the obvious goals is to "bullet-
proof" the kernel from mistakes or malice in other
protection domains. The author has long since
developed file systems purely on his desktop
machine instead of inside an emulator or test
environment. This has resulted in a few crashes
in cases where the userspace file server has been
acting erroneously. There are no known cases of
puffs leading to a system crash when the file sys-
tem is operating properly and many people in fact
already run psshfs on their systems. Incidents
where a misbehaving file server manages to crash
the system are being fixed as they are discovered
and discoveries are further and further apart.

It is, however, still very easy to figure out a
way to maliciously crash the system, such as
introduce a loop. This is more of a convenience
problem than a security problem, though, since
mounting a file system still requires special privi-
leges not available to regular users.

Simply using the system long enough and
developing new file systems will iron out all fairly
easy-to-detect bugs. However, to meet the final
goal and accomplish complete certainty over the
stability and security of the system, formal meth-
ods more developed than cursory analysis and
careful C coding principles are required.

4. Performance

These performance measurements are
meant to give a rough estimate of the amount of
overhead that is caused by puffs. Naturally a
userspace file system will always be slower than a
kernel file system, but the question is if the differ-
ence is acceptable. Nevertheless, it is important
to keep in mind that the implementation has not
yet reached a performance tuning stage and what
has been measured is code which was written to
work instead of be optimal.

The measurements were done on 2GHz
Pentium 4 laptop running NetBSD 4.99.9. Note
that the slowness of disk I/O is exacerbated on a
laptop.
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The first measurement used was extracting
a tarball which contains the author’s kernel com-
pilation directory hierarchy from memory to the
target file system. The extracted size for this is
127MB and contains 2332 files. It will therefore
reasonably exercise both the data and name hier-
archy sides of a file system.

The files were extracted in two different
fashions: a single extract and two extractions run-
ning concurrently. For non-random access media
the latter will stress disk I/O even more.

Four different setups were measured in two
pairs: ffs and ffs through puffs nullfs; dtfs and
tmpfs4. Technically this grouping gives a rough
estimate about the overhead induced by puffs. It
should be noted that the double test for the dtfs
case is not entirely fair, as the machine used for
testing only has 512MB of memory. The tree and
the associated page cache does not fit into main
memory twice. The tmpfs test does not have this
problem, as it does not store the tree in memory
and in the page cache.

tar extraction test

tmpfs (s) dtfs (s) diff (%)
single 3.203 11.398 256%
double 5.536 22.350 303%

ffs (s) ffs+null (s) diff (%)
single 47.677 53.826 12.9%
double 109.894 113.836 3.6%

Another type of test performed was the
reading of a large file. It was done both directly
off of ffs and through a puffs null layer backed by
ffs and it was done both for an uncached file (uc)
and a file in the page cache (c). Additionally, the
null layer test was done so that the file was in the
page cache of the backing ffs mount but not the
cache of the null mount itself (bc). This means
that the read travelled from the kernel to the user
server, was mapped as a system call to ffs, and the
data was found from the ffs file system’s page
cache, so no disk I/O was necessary.

4.1. Analysis of Results

The results for extraction show that puffs is
clearly slower than an in-kernel file system. This
is expected. But what is surprising is how little
overhead is added. tmpfs is a high optimized in-
kernel memory efficient file system. dtfs is a

4 tmpfs is NetBSD’s modern memory file system

read large file

system (s) wall (s) cpu (%)
ffs (uc) 0.2 11.05 1.8
null (uc) 0.6 11.01 5.9
ffs (c) 0.2 0.21 100.0
null (c) 0.2 0.44 61.6
null (bc) 0.6 1.99 31.7

userspace file system written for testing purposes
and not optimized at all. It uses malloc() as a
storage backend and as a extreme detail it does
not do block level allocation; rather it realloc()s
the entire storage for a file when it grows.

tmpfs contains 4828 lines of code while
dtfs is 1157 lines. The difference in code size is
over four times as many lines of code for tmpfs.
The difference in development effort probably
was probably even greater than this, although of
course there is no measurable evidence to back it
up. Development cycles for fatal errors for a ker-
nel file system are also considerably slower: even
though loadable modules can be used to reduce
the test cycle time to not require a complete
reboot, this will not help if the file system under
test crashes the kernel.

Even though tmpfs and dtfs are compared
here, it is important to keep in mind that they in
no way attempt to compete with each other.

A regular system call for a file operation
requires the user-kernel privilege boundary to be
crossed twice, while the puffs null scheme
requires it to be crossed at least six times: system
calls do not map 1:1 to vnode operations, but
rather they usually require several vnode opera-
tions per system call. However, as the results
show, the wall time penalty is very much hidden
under the I/O time imposed by the media.

The large file read test mostly measures
cache performance. The interaction of puffs with
the page cache is less efficient than ffs. The rea-
sons will be examined in the future. Also an
interesting result is the direct read from disk,
which was always slower than the read from disk
via nullfs. This result cannot yet be fully
explained. One possible explanation is that the
utility cat used for testing issues read() system
calls using the file system blocksize as the buffer
size and this creates suboptimal interaction with
ffs. When reading the file through the null layer
the read-ahead code requests 64k (MAXPHYS)
chunks and these are converted back to system
calls at the null layer and ffs is accessed in 64k
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chunks providing better interaction. This is, how-
ev er, just a hypothesis.

The "backend cached" test (bc) gives yet
another idea of overhead introduced by puffs. It
shows that reading a file in backend cache is ten
times as expensive in terms of wall time as read-
ing it directly from an in-kernel file system’s
cache is. It shows a lot of time was spent waiting
instead of keeping the CPU busy. This will be
analyzed in-depth later.

5. Current and Future Work

Even though puffs is fully functional and
included in the NetBSD source tree, work is far
from complete. This chapter outlines the current
and future work for reaching the ultimate goals of
the project.

File System Layering

File system layering or stacking [12,22] is a
technique which enables file system features to be
stacked on top of each other. All layers in the
stack have the ability to modify requests and the
results. A common example of such a file system
is the union file system [23], which layers the top
layer in front of the bottom layer in such a fashion
that all modifications are done on the top layer
and shadow the file system in the bottom layer.

While rot13fs is a clear example of a layer-
ing file system implemented on top of the puffs
null layer, libpuffs does not yet support any kind
of layering. Making layering support an integral,
easy-to-use, non-intrusive part of libpuffs a future
goal.

Improving Caching

As mentioned in Chapter 2, kernel caching
is already at a fairly good stage, although it could
still use minor improvements. However, library
support for generalized caching is missing. The
goal is to implement caching support on such a
level in libpuffs that most file systems could bene-
fit from the caching logic by just supplying infor-
mation about their backend’s modification activ-
ity.

This type of library caching is useful for
distributed file system where the file system back-
end can be modified through other routes than the
kernel alone. In cases where the file system is
accessed only through the local kernel, the file
server does not need to take care about caches:
the kernel will flush its caches correctly whenever
it is required, for example when a file is removed.

Another use is more aggressive read-ahead
than what the kernel issues. To giv e an example,
when reading a file in bulk over psshfs, the kernel
read-ahead code eventually starts issuing reads in
large blocks. However, an aggressive caching
subsystem could issue a read-ahead already for
the next large block to avoid latency at a block
boundary. It could also measure the backend
latency and bandwidth figures and optimize its
performance based on those.

Messaging Interface Description

Currently the message passing interface
between the kernel and libpuffs is described with
struct definitions in puffs_msgif.h. All
request encoding and decoding is handled manu-
ally in code both in the kernel and libpuffs. This
is both error-prone and requires manual labour in
a number of places. First of all, multiple loca-
tions must be modified both in the kernel and in
the library in case of an interface change. Sec-
ond, since all semantic information is lost when
the messages are written as C structures, it is diffi-
cult to facilitate a tool for automatically creating a
skeleton file system based on the properties of the
file system about to be written.

By representing the message passing inter-
face by a higher level description with, for exam-
ple XML, much of the code written manually can
be autogenerated. Also, this would lend to skele-
ton file system creation and to building limited
userspace file system testers based on the proper-
ties of the created file system skeletons.

Abolishing Vnode Locking

Currently the system holds vnode locks
while doing a call to the file server. The intent is
to release vnode locks and introduce locking to
the userspace file system framework. This will
open up several opportunities and will enable the
file system itself to decide what kind of locking it
requires; it knows its own requirements better
than the kernel.

Self-Healing and Self-Recovery

In case a file server hangs due to a pro-
gramming error, processes accessing the file sys-
tem will hang until the file server either starts
responding again or is killed. While the problem
can always be solved by killing the file server, it
requires the intervention from someone with the
correct credentials. Detecting malfunctioning
servers and automatically unmounting them
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would introduce recovery and self-healing proper-
ties into the system. Remounting the file system
automatically afterwards would minimize a break
in service.

Compatibility

To lev erage the huge number of userspace
file systems already written and available, it
makes sense to be interface compatible with some
projects. The most important of these is FUSE,
and a source code level compatibility layer to
puffs for FUSE file systems, dubbed refuse, is
being developed as a third party effort. As of
writing this, the compatibility layer is able run
simple FUSE file systems such as hellofs.
Progress here has been fast.

Another interesting compatibility project is
9P support. Even though, as stated earlier, sup-
porting it in the kernel would require a huge
undertaking, emulating it on top of the puffs
library interface may prove to be a manageable
task. Currently though, the author knows of no
such effort.

Longer Term Goals

A large theme is improving the vfs layer by
identifying some of its properties through formal
techniques [24] and using these to show that the
puffs kernel side correctly shields the kernel from
malicious and/or accidentally misbehaving user
file system servers. It also allows for the develop-
ment of the vfs subsystem into a more flexible
and less fragile direction.

6. Conclusions

The Pass-to-Userspace Framework File
System (puffs), a standard component of the
NetBSD operating system, was presented in
depth, including the kernel and user level archi-
tecture. puffs was shown to be capable of sup-
porting multiple different kinds of file systems:

• psshfs - the puffs sshfs file system capa-
ble of mounting a remote location
through the ssh sftp protocol

• dtfs - an in-memory general-purpose file
system

• sysctlfs - a file system mapping the
sysctl tree to a file system hierarchy

• nullfs - a file system providing any
directory hierarchy in the system in
another location

The ease of development of these file sys-
tems was observed to be good. Similarly, the
development test cycle time and time for error
recovery from crashes was observed to be very
close to nil. The comparison is the typical times
measured in minutes for kernel file systems.
Additionally, puffs does not require any special
tools or setup to develop, as is typical for kernel
development. Rather, standard issue user pro-
gram debuggers such as gdb can be attached to
the file system and the live file system can be
debugged on the same host as it is being devel-
oped on.

Performance of file systems built on top of
puffs was shown to be acceptable. In cases where
the storage backend has any significant I/O cost,
i.e. practically anything but in-memory file sys-
tems, the wall time cost for puffs overhead was
shown to be shadowed by the I/O cost. As
expected, puffs was measured to introduce some
additional CPU cost.

Finally, since puffs is entirely BSD licensed
code, it provides a significant advantage to some
parties over (L)GPL licensed competitors.
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One of the first significant elements of UNIX 
[1], was process time-sharing [2]. It�s easy to 
forget these early times, as we now com-
monly touch relatively inexpensive multi-cpu 
hardware, eclipsing the power of a PDP-11;
with smp and multi-threading kernels. Com-
puters therefore manage simultaneous proc-
esses scaled to levels only the most adven-
turous could dare imagine back when UNIX 
first appeared. Active and persistent memory
have of course scaled with raw CPU power.
And it continues to get faster.  We all know 
this.

We all know about machines, and have come
to repeat the design intentions of time-
sharing in many forms, including the 
FreeBSD jail(8) facility- a virtual machine.

The jail(8) subsystem in FreeBSD is well 
known to be an incredibly secure and durable
system for partitioning processes, memory,
network, and disk i/o. Building on the sim-
plest of core UNIX subsystems, jail is an ele-

gant base for creating Virtual Private Servers 
(# man 8 jail) To bastardize this rich and 
elegant system on FreeBSD:

chroot(2), bound to an IP address, minus 
some relevant system calls = jail

(Simply add a BSD userland, and a full virtual
system is born, with a confined root!)

This material assumes the reader is familiar 
with the jail(8) utility, and generally familiar 
with the mechanisms of the underlying jail(2) 
system call. Further reading on the use and 
implimentation of jail(8) can be found in the 
paper written by jail�s original author, �Jails:
Confining the omnipotent root.�, (PHK/
Watson, FreeBSD Core) [3].

This material aims to share real-world expe-
riences running massively jailed systems, 
from a ISP perspective.  Diverse goals and 
agendas can be liberated by applying modu-
lar, self-contained, and disposable technolo-
gies- (in short, traditional UNIX principles).

An ISP Perspective, jail(8) Virtual Private Servers <ike@lesmuug.org>
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The denial of complexity is the beginning of failure.

� - Swiss historian, Jacob Burkhardt

..with proper design, the features come cheaply. This approach is arduous, but 
continues to succeed.

� - UNIX co-creator, Dennis Ritchie

...As in all Utopias, the right to have plans of any significance belonged only to 
the planners in charge.

� - Jane Jacobs, “The Death and Life of Great American Cities” [0]
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Audience for these materials:

- UNIX System Administrators with demand-
ing users, and limited hardware resources

- Internet Service Providers who wish to pro-
vide robust shared hardware services

- Internet Service Providers with rigorous 
high-availability requirements, where mutu-
ally untrusted users and processes pose a 
threat to service reliability (uptime)

- Institutions with fast-paced development, 
learning, or short-lived server requirements

The iMeme Experience, my time at a small 
jailing ISP- (the first of it�s kind?)

Around 2000 I became a customer at a small 
web hosting company called iMeme. The
iMeme specialty, root-access virtual servers 
(using FreeBSD jail(8)).  My need, was to run
and further develop the behemoth web appli-
cation server, Zope.  I needed basics- root, a 
compiler, cron, logfile analysis and reporting 
tools- (a full server).  My budget was under 
$70/mo usd, and back then a dedicated 
server was unrealistic at that rate- I needed 
virtual-hosting scaled prices.

By 2002, iMeme hit some stiff �problems�
when a partner left, I was then asked to join 
the company- and we gave it quite a go.
During my time at the company we hit a mark
of 1000 domains hosted, in around 470 jailed
systems. The ISP was unique in that once 
you paid for your jailed system online, it was 
�booted�, and you had access to your new 
server- no Administrator action was neces-
sary.  iMeme, as a company, later died based
on external business problems.

Mutually Untrusted Users, (and processes).

2007, it can be estimated there are 785 mil-
lion people using the ipv4 internet [4],  argua-
bly a critical mass.  Most of these users have 

personal computers, yet a great deal of com-
puting today, again, happens on servers, of-
fering services in various contexts.

As the needs of users become more sophis-
ticated and varied, the applications become a
uniquely fragmented environment. From a 
birds eye view, an astounding amount of 
computing machinery makes all these net-
work applications run. From a micro view, it 
doesn�t take much computing machinery to 
run a single Gmail account- (from the CPU 
clock perspective).

With that, the proliferation of network soft-
ware which looks suspiciously like �websites�,
(and perhaps mislabeled as such), are start-
ing to to take various business applications 
off the PC, and onto the webserver, en 
masse�.  Everything from content and asset 
management systems, to financial account-
ing and transaction systems, to the core of 
the internet- information exchange through 
blogs, online communities, and on, and on. 
Through a sort of promiscuity of form [5], http 
applications are evolving to manifest timeless
forms of �traditional� software.

Users of any given ISP always include devel-
opers, hackers [6] , us. The mass of internet 
users who do not hack, have the same so-
phisticated and diverse demands.  For ex-
ample, thank MySpace for escalating user 
expectations in mass-market accessibility in 
http server applications.  With that, iMeme 
aimed to provide an inexpensive base plat-
form for new internet applications like this to 
grow.

The real world of iMeme users: A hacker: “I 
want to compile LISP”, An undergraduate so-
ciology student: “I want to install �Foo� blog 
software, it�s PHP and the instructions say I 
need to run Cron”, A web designer: “I want to 
run an http server on port 8080”. A business 
owner: “I want to run Foo web application for 
my business.” A community leader: “I want to 
run Mailman List Manager”, A 13 year old 
hacker: “I want to run both an IRC and jabber
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server for my friends”.  Most iMeme users 
simply, just wanted to hack Python/Zope.

Fairly simple requirements, yet so hard for 
commodity web hosting to accommodate!

Each of these users demands, and deserves,
root.

The real world of iMeme users was extremely
diverse.  From a business perspective, the 
�markets� served were all considered niche- 
hosting companies thought we were crazy.
However, we felt the internet is merely niches
stitched together to make a whole, and jail 
enabled a unique opportunity to build our ISP
in the model of a metropolitan city [7].

Timeless Methodology in Computing
(UNIX, the undead in computing)

Ancient UNIX computing models revolved 
around a model which the PC era did away 
with: server applications, feeding thin clients 
(server + many UNIX terminals).  PC�s
evolved, and network computing became 
largely a peer-to-peer affair. The internet, 
has now brought a swing in the pendulum 
back to thin clients, as the Web Browser, as 
software, takes on the same role a terminal 
did years ago- and UNIX is right there, ready 
and waiting to handle the applications- with 
an astounding wealth of time-tested (and 
some ancient) tools well suited for managing 
multi-user multi-process servers.

With that, simple, modular, disposable utilities
are vital to meeting the diverse needs of the 
iMeme user, in providing a full Virtual Private 
Server environment.

When jail(8) was first introduced to FreeBSD,
it was (and still is) a simple utility, written in 
the spirit of old UNIX. As a simple utility,
jail(8) provided iMeme the opportunity to 
build on the work of others and avoid rein-
vention and incompatibilities, (classic UNIX 
methodology).

jail(8) therefore proved itself well suited to to 
taking on the complexities of our user needs, 
which were essentially limitless.  Other Virtu-
alized system designs come close, but in-
somuch as most Virtual OS systems take on 
the monolithic responsibility of providing all 
system interfaces, (virtualized memory, net-
working, filesystem), they all critically failed to
meet the iMeme needs in one area or an-
other- as their respective histories were to 
meet a particular computing problem, or use 
case.

The history of computing is littered with the 
corpses of Virtual OS systems, all of which 
end up withering under the sheer weight of 
the computational responsibilities they take 
on.  However, like UNIX time sharing, simple 
and modular components of computational 
virtualization seem to be the only elements 
which persist.  Subsystems like UNIX users 
and ACL�s, actually the entire concept of 
UNIX privilege separation, follows in the foot-
steps of the simple mechanism of time-
sharing.  Enter, jail(8), 1998.

As a small and complete utility, jail(8) is much
like the invention of of the Otis Elevator and 
it�s affect on the design of skyscrapers, 

“In the era of the staircase all floors above 
the second were considered unfit for com-
mercial purposes, and all those above the 
fifth, uninhabitable.” [8]

The jail(8) utility, enabled the same sort of 
liberation of space, and with the same over-
tones of �safety�- if one compares security 
features to elevator safety concerns, (falling).

(Running the risk of sounding silly, I am di-
rectly comparing an internet hosting ISP to a 
skyscraper, and skyscrapers are different
from other types of buildings.)

The iMeme Experience (System Specifics)

The iMeme systems were quite simple for 
UNIX administrators to understand.
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We ran high-density 2u (and then 1u) serv-
ers, which we aimed to have approximately 
50 jails running on at any given time.  In 
2001, a base account was provisioned 4gb of
disk space, and 100mb of what we called 
�process space�, the amalgamation of mem-
ory and cpu usage.  Bandwidth was rarely an
issue worth metering back then, so very ba-
sic QOS oriented throttling was performed to 
ensure every user had a fair slice of available
network traffic.

For disk space, we ran scripts from the host 
server which simply used du, and shoved the
output into MySQL databases- where we 
then automated the process of implementing 
policies of charging for extra disk usage.  We
choose to give 1 month of �grace time�, in-
somuch as sometimes logfiles would ex-
plode, or users would accidentally consume 
undue disk space- and we felt this was a 
simple buffer our customers appreciated.

Hard limits for disk space were always a con-
sideration.  Disk slices were far too rigid to 
meet user demands, (creating extreme over-
head in managing upgrading disk space), 
though we did experiment with them. A per-
sistent risk was that a user, by choice, acci-
dent, or compromise, could consume all the 
available disk space for a jailing system.
With that, again, simple unix strategies came 
back into place to contain the problem. The
strategy we ended up liking best was to ab-
solutely a partition for jails, (the majority of 
available disk), and then perhaps break it into
a few chunks to isolate various jailed disk 
space from each other. After time, 80gb 
slices worked nicely, and fitting 4x 300gb 
drives into 1u, this afforded a sort of �neigh-
borhood� partitioning.  Extreme cases of disk 
consumption were further restricted on a per-
case basis, using file-backed memory disks 
(disk images); but, especially in recent 
FreeBSD releases, this incurs an additional i/
o penalty, which users do not appreciate- 
(and it soaks RAM on the host system as 
well).  Disk images are not necessarily a 
practical solution for every jailed system, 

however flexible they are in providing hard 
limits to disk space.

Memory and CPU usage was polled on a 
regular basis for each jail.  Shell scripts were 
originally setup to run as cron jobs inside
each jail, which took cumulative memory 
consumption and cpu usage by parsing ps(1)
output inside a given jail.  While iMeme origi-
nally ran thes scripts inside of each jailed 
system, outputting totals to text files in /jail/
dir/var/log/, however this always carried the 
risk that a user could (trivially) bypass this 
system to avoid increased billing or other-
wise.  In their jail, remember, the user has 
root. That stated, eventually iMeme moved 
this system out to the host system with new 
jailing features in FreeBSD 5.x- insomuch as 
one can list/kill processes based on the jail 
id, information availble to ps, and processes 
listed in the /proc filesystem.

FreeBSD 4.x jailing relied heavily on a jailed 
hostname for host-level process identification
(and subsequent management)- which cre-
ated problems.  If a user changed their host-
name, accidentally or maliciously, havoc 
would follow for management systems in the 
host system.  FreeBSD 5.x solved this prob-
lem by pinning a �jail id� to each process on 
the system, and providing a sysctl to lock 
down the ability to change hostnames within 
a jail.

Jailed process restrictions were then handled
neatly using renice(8).  Processes which 
hogged undue CPU were simply renice�d by 
the host server, releasing the process renice 
level after 5 minutes to see if the process 
was again behaving.  If not, it was reniced 
again. This crude strategy was wildly suc-
cessful in maintaining fair-share cpu and 
memory usage for processes.  Problem 
processes, (things with memory leaks, for 
example), were then in the hands of the jailed
user to deal with- without negatively impact-
ing the other jailed users.

Fork bombs were still a threat, but from 
FreeBSD 5.x onward, each jail could be set 
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to start with an escalated securelevel, and 
maxprocs could be locked for a jail, 
chflags(2) disabled in jails via host sysctl set-
tings, and  viola- fork bombs as a threat are 
mitigated, with relatively minimal manage-
ment and resource consumption.

Network resource management is far outside 
the scope of this material, however, it is worth
mentioning one thing: at iMeme, each jailing 
hardware server was conceptually treated 
like a network border or gateway, with routing
and filtering tasks carried out inside the ma-
chine. This paradigm shift in management 
greatly simplified the physical network re-
quirements, (making routers, firewalls, non-
existent).  With that, we ran NAT for our ex-
ternal IP blocks, and mapped addresses to 
our jails- which all ran using a private net-
block, (192.168.x.x). This NAT strategy had 
pros and cons and is hardly worth discus-
sion- except to state it all was run from the 
host servers, with negligible impact on jailed 
systems. Also, back then, ipfw(8) and dum-
mynet(4) were used for very minimal network
management- dummynet(4) configured to 
provide eqal-share bandwidth (ad-hock 
QOS), and IPFW was crudely used to put out
fires. Today, in my Diversaform jail cluster,
pf(4) nicely replaces these tools- and is be-
coming the de-facto packet filter- and in 5 
more years, there may be something else, 
but it will still be running from the jailing host 
hardware.

Large Scale Management Techniques
(System Specifics)

At iMeme, we maintained Master Record 
Server (obviously a redundant system). This
system primarily kept the MySQL database 
which recorded everything from resource us-
age, to billing and contact information. This
strategy worked well, provided any 
modifications/additions to this system were 
thoroughly tested. This was easy, insomuch 
as we could replicate this system in one of 
our jails at any time, and then dispose of the 
jail. There was no reason in particular for the

MySQL database, it was just used in the be-
ginning and stuck with us reliably.

The website, where users bought jailed sys-
tems, and managed their account and billing, 
was all written in Zope, and had PHP ele-
ments added over time. This could have 
been any web technology.

As each iMeme jailed system had some cus-
tom tweaks, we maintained a pre-compiled 
FreeBSD useraland, preconfigured with any 
small tweaks to our enviornment (like the 
cpu/memory polling cron job mentioned be-
fore). These jailed systems were built, and 
put into cvs(1) repositories for long-term 
management, however tar(1) became the 
deployment tool of choice.  Scripts to add 
new systems would effectively untar the cur-
rent jailing userland, and then run scripts to 
add an initial user, add the root password, 
and start the jail.

Upgrading jails was a trivial technical proc-
ess.  System upgrades were handled simi-
larly, un-tarring updated userland sources to 
jailed userland directories.  Following the hi-
er(7) man page, users additional applications
ended up in /usr/local, and only in extreme 
edge cases did a customer application have 
problems with minor dot upgrades, (4.5 to 
4.6, for example).

In FreeBSD 5.x, it became clear that running 
installworld, and tossing it an additional flag 
for the jailed directories, was even simpler 
than the tarballs, with the additional benefit of
dispensing with keeping userland (binaries!) 
in CVS.

When monitoring the systems, based on the 
rapid scaling possibilities with the ease of 
adding jails, keep monitoring simple- and 
quiet.  When problems occur on jailed sys-
tems, it�s *always* possible that all jails on a 
particular host are affected, so if they all trip 
alarms, administrators can get lost in white 
noise. An experiment, was logger(1)/
syslog(3).  iMeme tried pushing all jailed logs 
out to master syslogd(8) server, with nearly 
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worthless results. The valuable information 
was covered by the white noise of everything 
users were doing and running in their sys-
tems, and it also provided outright surprising 
breaches of privacy- so iMeme abandoned 
this idea immeadiately.  While there are ways
to sanely utilize syslogd(8) schemes, they are
far outside of the scope of this material.

Jailing Redundancy (failure is life)

Jails present a uniquely simplistic mechanism
for backup and fail-over. At iMeme, each jail-
ing host kept jails in /usr/local/jails. As time 
and internal methodology evolved, (disk slice 
strategies, etc...) 
/usr/local/jails/hostname.jailing.host became 
collected mount ponts and soft links, but the 
userland interface was always the same to 
find a given jail: 
/usr/local/jails/hostname.jailing.host/JAIL_DI
R

Then, each jaiing host both exported, and 
mounted, all other jail directories as an NFS 
mount. This carried extreme management 
benefits, worth the hassle and cursing asso-
ciated with heavy NFS use.  Operations 
could be carried out on each jailed userland 
from any jailing host in the cluster!  With that 
stated, backups and restore became simple 
operations.  Backing up became an operation
of tarballing each jail to a backup server, (in-
dependently redundant), and restores con-
sisted of untarring the jailed userland in the 
NFS mount of a jailed host.  If a jailing host 
server died, all of it�s jailed systems could 
then be rapidly re-distributed and re-started 
across the whole cluster. This process re-
quired Administrator intervention.

Post-iMeme, Diversaform jailed systems are 
run slightly differently- without NFS.  Each 
jailing host has an identical hardware ma-
chine, which jailed systems are regularly 
synchronized to.  If a jailed application re-
quires time-based backups, it is synchronized
to another jailing server (itself having a hard-
ware twin).  Diversaform systems have also 

been experimenting with a combination of 
carp(4) and ggated(8) (GEOM Gate), provid-
ing network interface virtualization and net-
work block-level disk mirroring, but due to 
discovered inconsistencies of the FreeBSD 
carp(4) mechanism, and the relatively low 
adoption (and documentation) of ggated(8), 
this setup is still considered experimental.
However, as these tools mature, they prom-
ise to help bring real-time failover of jailed 
systems- without Administrator intervention.

One last strategy for jailing failover has been 
called �The Golden Jailing Formula�: NFS 
mass storage backing for jails� userland, run-
ning on thin servers in a cluster. This is an 
excellent strategy, excepting it�s restrictive-
ness for scaling.  Many jailing administrators 
have attempted this formula, yet it doesn�t
scale as modularly as the iMeme strategy- 
which uses many jailing hosting servers, (or 
one jailing host). Total storage, i/o through-
put, and then redundancy of this system 
make scaling jails difficult- and the reality of 
jailing, is that in many contexts, jailed sys-
tems grow far beyond initial expectations.  So
while this is a technologically viable plan, so-
cial, political, economic, and human factors 
limit it�s success in most manifestations of 
massively jailed environments.

User Segregation (a bad idea)

Back to the various mutually untrusted users,
a component of any massively jailed systems
environment is to segregate users according 
to their threat level to the whole. This quickly
takes jailing into philosophical approaches to 
social, political, economic, and human fac-
tors.

The wily hacker is your friend.  iMeme foun-
ders� roots literally grew up at the annual 
Defcon security conference, in the USA.
With that, many iMeme customers were po-
litely put, a bit insane- and very demanding.
Should these users be identified and placed 
on their own hardware, so some hackhing 
hyjinks don�t get out of control and affect the 
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�small business� or �nice� customers? This is 
a common question iMeme wrestled with. 

However, at this real-world massively jailed 
ISP, the very opposite scenario manifest.
The �small business� user often followed less 
than adequate security practices, as well as 
running less stable software.  With that, it 
was more often the �wiley hacker� complain-
ing about their small-business or blogging 
neighbor.

Regardless, it became clear that there was 
no viable metric for how or when to segre-
gate users to given hardware servers , and in
the end it became irrelevant in mitigating the 
risks inherent in any shared system.  So what
did iMeme do? This problem is a constant, 
use this environment to advantage for all.

Blindly distributing types of users across all 
hardware, had the distinct advantage of lev-
eraging everyone�s shared needs- keeping all
systems online. The use of a customer/
community mailing list created an enviorn-
ment where business owners and wiley 
hackers alike, could share experiences and 
discuss problems- all with the common aim of
solving the problems. Additionally, this 
community took a great deal of impossible 
administrative overhead out of iMeme Admin-
istrator hands.  It helped set the expectation 
that we just ran the servers, but had no ex-
pertise in using FOO PHP blog software, or 
BAR irc server, etc...

That stated, hackers who monitor uptime 
were a guard for the �business owner� who 
did not, and the various social and cultural 
diversity of the user base ensured somebody
was online 24/7.  While this made for excel-
lent catch-all systems monitoring, it also 
made it difficult to schedule upgrades- a triv-
ial point in the context of the benefits.

Developers vs. Production Users is likewise a
poor segregation line, insomuch as �develop-
ers� are often hammering systems that �pro-
duction users� may rarely touch- and can help
spot system problems before they become 

critical (arbitrary inode corruption, for an an-
ecdotal example).

In the end, user diversity decreased overall 
failure risks in iMeme systems.

Conclusion

Through a combination of building on thirty 
years of UNIX, attention to social concerns, 
and respect for undeniable complexity, jail(8) 
was leveraged to great success at the ISP
iMeme.

The most valuable elements in successfully 
running massively jailed systems were not 
cutting-edge technologies, but the application
of ancient practices in computing, urban de-
sign, and to a great extent social and political
sciences.

Now that iMeme is gone, who�s next?  What 
ISP, in private, commercial, or other contexts 
will step foreword to provide virtual systems?

Doesn�t  everyone deserve root?
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Note: parens in the text, ( ) refer to a correspond-
ing UNIX man page, notatin of brackets [ ] refer to
the footnotes below.
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Abstract

This paper describes the extensions to the FreeBSD nsswitch subsystem, that should be committed to the source tree in 
the nearest future and the issues that had to be solved to make them. These changes are: 

1) The separation of the libc and nsswitch modules, which makes libc code much lighter and nsswitch subsystem 
more dynamic. It also allows proper use of the nsdispatch(3) calls from the userland. 

2) New features, that were added to the caching daemon (full “perform-actual-lookups” option support, 
“precache” and “check-files” option). They make it much more usable and similar in functionality to 
Linux/Solaris nscd, while having its own unique features. 

Preface

The work, described below, was made during and 
after the Google Summer Of Code 2006, which I 
was lucky to participate in, working for the 
FreeBSD community. It is not yet committed to the 
-CURRENT, but I hope it to be finally reviewed and 
committed in the nearest future. 

Nss-modules and libc separation 

The idea of nss-modules and libc separation is quite 
straight-forward: we should make several dynamic 
libraries (nss_files, nss_dns, nss_compat, nss_nis) 
and move appropriate code from libc to them. 
Appropriate code is the functions which were 
specified as the sources during nsdispatch(3) 
calls.

Several issues had to be solved to separate nss-
modules from the libc. 

Issue 1. Common functionality 

Common functionality was the almost ubiquitous 
problem of all nss-modules. As all nsswitch sources 
for the particular database usually reside in 1 file 
(getpwent.c, for example), their functions usually 
use some common routines (pw_scan, for example). 
To move such modules from the libc with minimal 

changes, common functions were moved to the 
internal libnssutil static library. This library is 
compiled with ${PICFLAG} to allow linking with 
shared libraries - i.e. nsswitch modules. It contains 
quite general routines (like copy_htent() and 
copy_netent()) and is used from nss_files, nss_nis, 
nss_dns, and nss_compat. It can also be useful if 
some new nss-module is introduced. 

Getipnodeby**(3) functions had a lot of common 
functionality issues. It turned out that the simplest 
way to solve them is to implement 
getipnodeby**(3) functions not through 
nsdispatch(3) calls but through gethostby**(3) calls. 
Such modifications were made and tested for 
compatibility with current implementations 
(nsswitch regression tests, that are described below 
were used to ensure that the behavior of these 
functions didn't change). 

Issue 2. Threading and private libc includes 
issues

All nss-modules use thread specific storage (thread 
local storage) by using either 
NSS_TLS_HANDLING or 
NETDB_THREAD_ALLOC macros from nss_tls.h 
and netdb_private.h respectively. Both of these files 
are libc-internal. And they both require all pthread-
related calls to be hidden with namespace.h/un-
namespace.h includes. To allow nss-modules to be 
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moved out of the libc with minimal changes, 
<pthread.h> and <pthread_np.h> includes are 
enclosed with "namespace.h" and "un-namespace.h" 
in their source code. Path to libc/include is added to 
the standard include path for each module to allow 
"nss_tls.h", "netdb_private.h" and other libc-private 
files inclusion. 

Such an approach allows to move out the modules 
from the libc to separate libraries with minimal 
changes to their sources, which is very useful, until 
this work is finally committed. The drawback of 
such decision is the dependency of the nss-modules 
code on the libc code. This dependency can surely 
be broken after the modules are separated in –
CURRENT. For example, if all modules use only 
NSS_TLS_HANDLING macro to handle thread 
local storage data, then it will make netdb_private.h 
unneeded. The nss_tls.h can be modified not to use 
hidden versions of pthread calls and placed in the 
libnssutil folder (it would have to be left in libc also 
- as it is used not only from nss-modules but also 
from the libc itself). Other libc-private includes can 
also be easily eliminated from the modules’ sources. 

Issue 3. Statically linked binaries 

Statically linked binaries can't call dlopen(3). But 
when all nss-modules are moved out from the libc, 
dlopen(3) is the only way to use them. To solve this 
issue, not only the dynamic versions of the nss-
modules, but also their static versions, should be 
built. Libc's Makefile was modified to link statically 
built nss-modules in (please see Appendix A for 
details).

Nsdispatch.c has the nss_load_builtin_modules() 
function, which loads the statically linked modules 
into the libc at program startup. In the shared libc.so 
each modules' entry function is now replaced with 
an empty stub. In static libc.a each modules' real 
entry functions are used. nsdispatch.c was slightly 
modified to correctly distinguish real module entry 
functions from a stub. 

The approach, that was used to link-in nss-modules 
into the static libc.a is quite flexible - new module 
can be added to the list of linked-in modules without 
any problems as long as it can be built as a static 
library (plus some 1-line changes would need to be 
made to the libc). The possible extension of this 
approach is to: 

1. Make the list of the linked-in modules extendable 
via macro definitions, that can be defined during the 
buildworld.
2. Add an option to the nss-modules ports to build 
statically linked libraries along with shared ones. 

With these changes made, the user will be able to 
link-in any prebuilt nss-module into the libc during 
the buildworld process. This would allow him to use 
this module’s functionality with any of the statically 
linked binaries (/rescue is the most important 
example, probably) without any restrictions 

Benefits of separating nss-modules from the libc 

1. The code of both libc and nsswitch modules 
became much cleaner. The common functionality 
was placed into the libnssutil library and the number 
of interdependencies between libc and nsswitch 
modules sources was reduced to minimum. The 
code of the particular nsswitch module is not spread 
over several libc files, but is located in one library. 

2. The described above ability to add the particular 
module support to the libc without any pain is now 
present.

3. There is now an ability to actually use 
nsdispatch(3) routine not only from the libc. The use 
of nsdispatch(3) was limited because of the number 
of the opaque pointers (in the dtab structure, that 
describes the list of nss-modules and their entry-
points), that were needed to be passed in order for 
nsdispatch(3) to use libc built-in modules. When all 
nss-modules are standalone, the need in these 
pointers became obsolete, so nsdispatch(3) can be 
used and will properly work not only in the libc, but 
also in any other place. That gives an ability to 
properly support "perform-actual-lookups" option 
for all nsswitch databases in the caching daemon 
(please see the details below). 

Nsswitch Regression Tests 

The basic idea of the regression tests is to check that 
the expected functions behavior doesn’t change after 
their sources modification. The idea of the 
regression testing for nsswitch is that the nsswitch 
query results should be generally the same after the 
system or nss-modules upgrade (if we don’t change 
the databases, of course). The test procedure itself is 
very simple: we make a set of nsswitch queries 
(get**ent(3), get**byname(3) and get**byid(3) 
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calls) and store their results in a file. When the test 
is done next time, it does the same queries in the 
same order and checks that their results are equal to 
the stored ones. 

So, the testing is done in 2 stages. 

First stage is the snapshot creation stage. We run the 
test and it builds a snapshot file of the nsswitch 
queries results. It also checks these results for 
correctness – numerical values must be in the 
correct range, (char *) strings that should not be 
NULL must not be NULL. For the resolver 
functions we can check that the ip address length 
corresponds to ip address type and, if the address 
was mapped from ipv4 to ipv6, that it was mapped 
correctly. 

During stage 2 we use the already created snapshot 
to perform the same set of queries and then compare 
their results to the ones in the snapshot. We also 
check all results for correctness on this stage. 

Such kind of testing can be used to test any existent 
nsswitch module. For example, we can take 
FreeBSD6-STABLE, run the first stage of the test, 
then upgrade to CURRENT and run the second 
stage of the test. The test will show all the 
compatibility issues between versions of nsswitch-
dependent functions. 

All nsswitch regression tests are C programs, that 
use the same testutil.h file, which carries most of the 
common logic (mostly in the form of macro 
definitions). The command line arguments are the 
same for almost all tests: 
  -d - enables debug output, which helps to debug 
the test itself and to get more information in case of 
test failure 
  -n - runs test for the get**byname(3) function 
  -e - runs the test for the get**ent(3) functions 
  -g, -u, -p – run the test for getgrgid(3), getpwuid(3) 
or getservbyport(3) functions accordingly 
  -s <file> - causes the snapshot file to be created or, 
if it already exists, to be used to check the equality 
of the nsswitch queries results 

The described regression tests were used while work 
on libc and nsswitch modules separation was being 
done. Their output was used to ensure that the 
behavior of the system with all modules built into 
the libc is equal to its behavior with all modules 
separated. They’ve especially helped during the 

getipnodeby**(3) functions reimplementation 
through the gethostby**(3) calls. 

Regression tests can also be used to ensure that the 
caching daemon works correctly. To do that, we 
make a snapshot, when the caching for the particular 
nsswitch database is turned off, then we turn it on, 
run the stage 1 again (without rewriting the snapshot 
file), so that all necessary data are cached and then 
run stage 2 test with the snapshot file. If any error 
occurs during the caching process or caching 
daemon’s marshalling/demarshalling process, it will 
most probably be mentioned in the test output. 

Cached performance analysis 

Cached gives tremendous and easily explainable 
performance boost for network-related nsswitch 
queries – LDAP is the best example, probably. 
That’s why comparing the performance of the, for 
example, “passwd” nsswitch database queries to 
LDAP with and without caching is not of much 
interest. Much more interestingly is to compare 
caching daemon speed with the speed of the fastest 
nsswitch source: “files”. 

To do the comparison, we’ve used the “passwd” and 
“services” databases, which are quite different in 
their current implementation: “passwd” relies on 
BDB and “services” – on plain files. 

We modified the sources of the getent utility so that 
it began to write getrusage(2) information to the 
stdout after each nsswitch query. Then, for each test 
we ran getent multiple times, forcing it to do 2 
queries at 1 run. Only the speed of second query 
from each run was taken into account, because the 
first query always involves much overhead for 
reading nsswitch.conf file, loading nsswitch 
modules, caching the results, when caching was 
enabled and so on. The results were collected in the 
files and then processed by python script. For each 
type of testing (we used getpwnam(3) for “passwd” 
testing and getservbyname(3) for “services” testing), 
total of 10000 requests were made, 5000 of them 
were taken into account. For “services” database, 
half of requests were made for the data in the top 
part of the /etc/services file and half – for the data in 
the bottom of this file, because the time of the 
getservbyname(3) call is proportional to position of 
the needed data in /etc/services.  
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Here are the numbers (in microseconds), evaluated 
in different caching conditions: 

Caching turned off 
“passwd” nsswitch database 
Total time: 44880.00 
Average time: 44.88 
Median time: 47.00 
Standard deviation: 13.39 
Minimal time: 27.00 
Maximum time: 157.00 
“services” nsswitch database 
Total time: 5529766.00 
Average time: 552.98 
Median time: 1069.00 
Standard deviation: 492.91 
Minimal time: 30.00 
Maximum time: 1209.000 

Caching turned on (caching daemon is in single 
threaded mode): 
“passwd” nsswitch database 
Total time: 102717.00 
Average time: 102.72 
Median time: 100.00 
Standard deviation: 21.58 
Minimal time: 71.00 
Maximum time: 197.00 
“services” nsswitch database 
Total time: 1010379.00 
Average time: 101.04 
Median time: 169.00 
Standard deviation: 22.31 
Minimal time: 71.00 
Maximum time: 214.00 

Caching turned on (caching daemon is in 
multithreaded mode – 8 threads): 
“passwd” nsswitch database 
Total time: 124147.00 
Average time: 124.15 
Median time: 150.00 
Standard deviation: 27.58 
Minimal time: 78.00 
Maximum time: 232.000 
“services” nsswitch database 
Total time: 1213242.00 
Average time: 121.32 
Median time: 137.00 
Standard deviation: 28.25 
Minimal time: 80.00 
Maximum time: 257.00 

While showing good results (about 5,5 times faster) 
with caching enabled for "services" database, this 
test shows the ugly truth - it's nearly impossible to 
beat BDB query time with caching daemon’s query 
time. This fact makes using cached for local sources 
very questionable (not impossible, though). BDB is 
obviously the fastest solution, but caching daemon 
caches all plain files information in the uniform 
way, it can perform checks on local files to update 
cache if they are changed (with all precautions of 
not flushing the old data if something is wrong with 
the updated file) and do precaching on startup 
(please see below), it is more lightweight solution, 
that does not require BDB in tree. But, once again, 
if the speed is the main and only concern, then BDB 
is the choice. 

Actually there are 3 areas, where cached’s speed can 
be improved: 

1) Socket I/O 
2) Multithreading
3) Lack of performance-improvement features 

Socket IO optimizations appeared very hard to be 
done without major changes of the cached's 
architecture. And, most of the socket I/O-related 
calls have normal execution time, which however is 
much longer than BDB-related calls time. Because 
of these 2 reasons, no significant changes were 
made to the socket I/O part. 

Multithreading issues doesn’t seem (according to 
the numbers above) to affect the caching daemon’s 
speed much. 

54



Because of the described reasons, Item 3 was 
considered to be the most perspective way to 
improve cached’s performance in certain cases., so 
the precaching feature was added to the caching 
daemon (please see below).  

Cached extensions 

"perform-actual-lookups" option full support 

The nss-modules and libc separation allowed adding 
full support for the "perform-actual-lookups" option 
to the FreeBSD caching daemon. With this option 
turned on, cached acts exactly like Linux/Solaris 
nscd daemon for the particular nsswitch database - 
i.e. it makes requests by itself and not only caches 
the results, supplied by the user. 

"precache" option support 

"precache [cachename] [yes|no]" option support was 
added to the caching daemon. With this option 
turned on, the caching daemon precaches the 
specified database at startup (and, possibly, recaches 
it in case of local file change – please see below). 

Precaching can be very useful for such databases as 
"services" when "perform-actual-lookups" method is 
turned on. If we precache data on startup, all queries 
to the cached would be read_request-search-
read_response queries (without any write 
operations). And this type of queries is the fastest 
one in the caching daemon. It has no overhead of 
writing to cache, or of performing the nsdispatch(3) 
lookup.

This option proper support was also made possible 
only by the libc and nsswitch modules separation. 

"check-files" option support 

"check-files [cachename] [yes|no]” option is now 
also supported by the caching daemon. With this 
option turned on, cached flushes the cache for the 
particular nsswitch database automatically when its 
corresponding local file is changed. For example, 
cache for groups is flushed in case of /etc/group file 
change.

The lack of this option made caching daemon 
sometimes unusable during several ports installation 
process and required system administrator to flush 
the cache manually after any local database update. 

FreeBSD caching daemon and nscd 

The libc and nss-modules separation and cached 
extensions, that were made possible because of it, 
are directed to make nsswitch subsystem more 
powerful and flexible. 

With all its current features FreeBSD caching 
daemon became similar in many terms to the nscd 
daemon, used in other OSes. It has its unique 
feature, though - the ability to rely all the nsswitch 
requests on the user side, and only cache their 
results by itself. However, because of the similar 
functionality and compatible configuration files, 
caching daemon will be probably renamed to nscd, 
when the work, described in this paper is 
committed. 

Conclusion

Most notable features, that the work, described here, 
gives to developers are: cleaner libc and nsswitch-
modules code, the easy process of adding a 
particular module to the list of libc's built-in 
modules and ability to use nsdispatch(3) not only in 
the libc. The latter was used to add several useful 
options to the caching daemon and can be possibly 
used to build specific nsswitch tools (like the 
mentioned caching daemon or getent command, for 
example). The described regression tests can be 
used in future nsswitch development to ensure the 
invariance of the nsswitch-related libc functions 
behavior.
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Appendix A 

# Include nss-modules's sources so that statically linked apps can work 
# normally 
NSS_STATIC+= ${.OBJDIR}/../nss_files/libnss_files.a 
NSS_STATIC+= ${.OBJDIR}/../nss_dns/libnss_dns.a 
NSS_STATIC+= ${.OBJDIR}/../nss_compat/libnss_compat.a 
.if ${MK_NIS} != "no" 
NSS_STATIC+= ${.OBJDIR}/../nss_nis/libnss_nis.a 
.endif
NSS_STATIC+= ${.OBJDIR}/../libnssutil/libnssutil.a 

# NSS-modules should be linked into the libc.a 
nss_static_modules.o:
        ${LD} -o ${.TARGET} -r --whole-archive ${NSS_STATIC} 

# libc.so should have stubs instead of module-load 
# functions 
nss_stubs.So:
        ${CC} ${PICFLAG} -DPIC ${CFLAGS}\ 
        -c ${.CURDIR}/net/nss_stubs.c -o ${.TARGET} 

.if ${MK_PROFILE} != "no" 
nss_static_modules.po:
        ${LD} -o ${.TARGET} -r --whole-archive ${NSS_STATIC} 
.endif

DPSRC=  nss_static_modules.c nss_stubs.c 
STATICOBJS+= nss_static_modules.o 
SOBJS+= nss_stubs.So 
CLEANFILES+= nss_static_modules.o nss_stubs.So 

Appendix B 

The details of the described work along with the patches can be found on the FreeBSD wiki: 
http://wikitest.freebsd.org/LdapCachedDetailedDescription
http://wikitest.freebsd.org/MichaelBushkov

The code is located in the perforce branch: 
http://perforce.freebsd.org/depotTreeBrowser.cgi?FSPC=//depot/projects/soc2006/nss%5fldap
%5fcached/src&HIDEDEL=YES
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1 Introduction

FreeBSD is a widely deployed open source operating

system. [3] Found throughout the industry, FreeBSD

is the operating system of choice for many appli-

ance products, embedded devices, as a foundation OS

for several mainstream commercial operating systems,

and as a basis for academic research. This is distinct,

however, from the FreeBSD Project, which is a com-

munity of open source developers and users. This pa-

per discusses the structure of the FreeBSD Project as

an organization that produces, maintains, supports, and

uses the FreeBSD Operating System. As this commu-

nity is extremely large, I approach this from the per-

spective of a FreeBSD developer. This necessarily cap-

tures the project from my perspective, but having had

the opportunity to discuss the FreeBSD Project exten-

sively with many people inside and outside the com-

munity, I hope it is also more generally applicable.

2 Introduction to FreeBSD

FreeBSD is an open source BSD UNIX operating sys-

tem, consisting of a kernel, user space environment,

extensive documentation, and a large number of bun-

dled third party applications. It is widely used as an

ISP server platform, including at well-known providers

such as Yahoo!, Verio, New York Internet, ISC, De-

mon, and Pair. It is also widely used in part or in

whole for appliances and embedded devices, includ-

ing Juniper’s JunOS, Nokia’s IPSO, and for commer-

cial operating system products, such as VXWorks and

Mac OS X. The product of one of the most successful

open source projects in the world, FreeBSD develop-

ment work has focused on the areas of storage, net-

working, security, scalability, hardware support, and

application portability.

The highly active FreeBSD development commu-

nity centers on services offered via FreeBSD.org,

which include four CVS repositories and a Perforce

repository. These represent the life-blood of the devel-

opment and documentation work of the Project. There

are over 300 active developers working in CVS, which

hosts the official development trees for the base source

code, Ports Collection, projects tree, and documenta-

tion project. Significant project work also takes place

in Perforce, which supports a heavily branched concur-

rent development model as well as guest accounts and

external projects.

Another defining feature of the FreeBSD Project is

its use of the liberal Berkeley open source license.

Among features of the license are is remarkable sim-

plicity (the license can be fully displayed in an 80x24

terminal window) and its ability to support derived

works that are closed source, key to commercial and

research adoption of FreeBSD.

3 What do you get with FreeBSD?

FreeBSD is a complete, integrated UNIX system. The

core of FreeBSD is a portable multi-processing, multi-

threaded kernel able to run on a variety of hardware

platforms including Intel/AMD 32-bit and 64-bit pro-

cessors, Intel’s Itanium platform, and Sun’s UltraSparc

platform. FreeBSD is also able to run on several em-

bedded platforms based on i386, ARM, and PowerPC;

a MIPS port is also underway.

FreeBSD implements a variety of application pro-

gramming interfaces (APIs) including the POSIX

and Berkeley Sockets APIs, as well as providing a

full UNIX command line and scripting environment.

The FreeBSD network stack supports IPv4, IPv6,

IPX/SPX, EtherTalk, IPSEC, ATM, Bluetooth, 802.11,

with forthcoming support for SCTP. Security features

include access control lists (ACLs), mandatory access

control (MAC), security event auditing, pluggable au-

thentication modules (PAM), and a variety of cryp-

tographic services. FreeBSD ships with both work-

station/server and embedded development targets, and

comes with extensive user and programmer documen-

tation.

FreeBSD also ships with ports of over 16,000 third

party open- and closed-source software packages, pro-

viding programming and user interfaces such as X11,

KDE, Gnome, OpenOffice, and server software such

as Java, MySQL, PostgreSQL, and Apache.
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4 The FreeBSD Project

The FreeBSD Project’s success can be measured

by the extremely wide deployment of FreeBSD-

based systems. From root name servers to major

web hosts, search engines, and routing infrastruc-

ture, FreeBSD may be found at most major service

providers. FreeBSD is also the foundation for a num-

ber of commercial operating systems. The FreeBSD

Project is more than just software, or even software

development: it includes a global community of de-

velopers, port maintainers, advocates, and an exten-

sive user community. Central to this community are

the FreeBSD.org web site, FTP site, CVS repository,

and mailing lists.

Several papers and studies have been written on the

topic of the FreeBSD Project and its development pro-

cess, including a papers by Richards [7], Jorgensen [4],

and Dinh-Trong [1].

5 The FreeBSD Foundation

The FreeBSD Foundation is a non-profit organization

based in Boulder, CO. By design, the Foundation is

separate from the FreeBSD Project. When the Foun-

dation was created, it was not clear that a non-profit

supporting open source development was a viable con-

cept. As such, it was important to the founders that the

Foundation be a separate legal entity that would sup-

port the Project, but that the Project not be dependent

on the long-term viability of a Foundation. It was also

important to the founders of the Foundation that there

be a differentiation between the people managing the

monetary, legal, and administrative matters and those

administering the software development work in the

project. In practice, the Foundation has proved finan-

cially and administratively successful, and plays an im-

portant role in supporting the daily operation and long

term success of the Project.

The FreeBSD Foundation is responsible for a broad

range of activities including contract development (es-

pecially relating to Java), managing of intellectual

property, acting as a legal entity for contractual agree-

ments (including non-disclosure agreements, software

licensing, etc), providing legal support for licensing

and intellectual property issues, fund-raising, event

sponsorship (including BSDCan, EuroBSDCon, Asi-

aBSDCon, and several FreeBSD developer summits a

year), providing travel support for FreeBSD developers

and advocates, negotiating collaborative R&D agree-

ments, and more.

The FreeBSD Foundation is currently managed by

a board of directors, and has one part-time employee

who is responsible for day-to-day operation of the

Foundation as well as sitting on the board. The board

also consists of four volunteer members drawn from

the FreeBSD developer community. The FreeBSD

Foundation Board is in regular communication with

other administrative bodies in the FreeBSD Project, in-

cluding the FreeBSD Core Team.

The FreeBSD Foundation is entirely supported by

donations, and needs your help to continue its work!

6 What We Produce and Consume

The FreeBSD Project produces a great deal of code:

the FreeBSD kernel, user space, and the Ports Collec-

tion. But the FreeBSD Project does not produce “just

source code”. FreeBSD is a complete software prod-

uct, consisting of software, distribution, documenta-

tion, and support:

• FreeBSD kernel, user space

• Ports collection, binary package builds

• FreeBSD releases

• FreeBSD manual pages, handbook, web pages,

marketing material

• Architecture and engineering designs, papers, re-

ports, etc

• Technical support, including answering questions

and debugging problems

• Involvement in and organization of a variety of

FreeBSD user events

This would not be possible without support of a

larger community of users and consumers, who pro-

vide certain necessary commodities:

• Beer, wine, soda, chocolate, tea, and other

food/beverage-related vices in significant quan-

tity.

• Donated and sponsored hardware, especially in

racks at co-location centers, with hands to help

manage it.

• Bandwidth in vast and untold quantities.

• Travel grants, developer salaries, contracts, devel-

opment grants, conference sponsorship, organiza-

tion membership fees, etc.

• Thanks, user testimonials and appreciation, good

press.

• Yet more bandwidth.

None of these has a trivial cost–by far the most im-

portant resource for the project is developer time, both

volunteered and sponsored.
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7 Who are the Developers?

FreeBSD developers are a diverse team, made up of

members from 34 countries on six continents. They

vary in age between 17 and 58, with a mean age of

32 and median age of 30; the standard deviation is

7.2 years. FreeBSD developers include professional

systems programmers, university professors, contrac-

tors and consultants, students, hobbyists, and more.

Some work on FreeBSD in a few spare hours in the

evening once a week–others work on FreeBSD full

time, both in and out of the office. FreeBSD develop-

ers are united by common goals of thoroughness and

quality of work. Unlike many open source projects,

FreeBSD can legitimately claim to have developers

who have worked on the source base for over thirty

years, a remarkable longevity that would be the envy

of many software companies. This diversity of expe-

rience contributes to the success of FreeBSD, com-

bining the pragmatic “real world problem” focus of

consumers building products with the expertise of re-

searchers working on the cutting edges of computer

science research.

Figure 1: Age Distribution of FreeBSD Developers

(2005)

8 FreeBSD Processes

The FreeBSD Project is successful in significant part

because it encapsulates not just many experienced and

highly competent individuals, but also because it has

a set of well-defined development processes and prac-

tices that are universally accepted and self-sustaining.

• Committer life cycle and commit bits - The pro-

cess by which new developers are inducted into

the community and mentored as new members of

the community is well-defined and successful.

• Core Team - Project leadership is selected and re-

newed via regular elections from the developer

team as a whole, insuring both continuity, contin-

ued engagement, and fresh voices lead the project

over time.

• Mailing lists - Through extensive and courteous

use of mailing lists for almost all project commu-

nications over many years, consensus is almost

universal in project decision making, and there

is relatively little “stepping on toes” for a project

that spans dozens of countries and time zones.

• Web pages and documentation - A well-designed

and extremely complete set of web pages and

documentation provide access to both the current

condition and history of the project, from tutorial

content for new users to detailed architectural in-

formation on the design of the kernel.

• Groups/projects - A hallmark of FreeBSD’s suc-

cess is the scalable community model, which

combines the best of centralized software devel-

opment with project-oriented development, al-

lowing long-term spin-off projects to flourish

while maintaining close ties and involvement in

the central project.

• Events - The FreeBSD Project exists primarily

through electronic communication and collabo-

ration, but also through in-person developer and

user events occurring continuously throughout the

year. These include developer summits and in-

volvement in both BSD-specific and general pur-

pose conferences.

• Honed development and release cycle - With over

ten years of online development and release en-

gineering experience, the FreeBSD Project has

pioneered many online development practices,

combining professional software engineering ap-

proaches with pragmatic approaches to volunteer-

driven open source development. One of the key

elements of this approach is effective and highly

integrated use of software development tools and

revision control, including the use of multiple re-

vision control systems, CVS and Perforce.

• Centralized computing resources - Also key to

the success of the project has been the use of

several globally distributed but centrally managed

computing clusters, organized and maintained by

project donors and a highly experienced system

administration team. The FreeBSD.org infras-

tructure ”just works”, providing flawless support

for the daily activities of the project.

• Conflict resolution - In any development project,

but especially in widely distributed organizations,

effective management of technical disagreements

and conflicts is critical; the FreeBSD Project’s

history is full of examples of successful conflict

resolution leading to both good technical and so-

cial outcomes.
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8.1 FreeBSD Committers

A FreeBSD committer is, in the most literal sense,

someone who has access to commit directly to the

FreeBSD CVS repository. Committers are selected

based on four characteristics: their technical expertise,

their history of contribution to the FreeBSD Project,

their clear ability to work well in the FreeBSD com-

munity, and their having made the previous three ex-

tremely obvious. Key to the induction of new com-

mitters is the notion of a mentor: this is an existing

committer who has worked with the candidate over an

extended period and is willing to both sponsor their

candidacy and also act in a formal role in introducing

them to the project. The mentor proposes the candi-

date to one of the Core Team, Port Manager, or Do-

ceng, who respectively approve commit rights for the

src tree, the ports tree, or the documentation tree. A

typical proposal includes a personal introduction of the

candidate, a history of their background and contribu-

tion, and volunteers to mentor them.

Once approved, typically by a vote, the new commit-

ter is given access to the FreeBSD.org cluster and au-

thorized access to CVS. Mentorship does not end with

the proposal: the mentor and new committer will have

a formal ongoing relationship for several months, in

which the mentor works with the new committer to re-

view and approve all commits they will make, helps

them circumnavigate the technical and social structure

of the project. This relationship often continues infor-

mally in the long term, beyond the point where the

mentor has “released” the new committer from men-

torship. Typically, there is significant technical inter-

est overlap between the proposing mentor and the new

committer, as this will be the foundation on which fa-

miliarity with their work, as well as competence to re-

view their work, will have been formed.

Figure 2: Number of FreeBSD committers by commit

bit type (2005)

Committers often begin working in one of the var-

ious trees, and gradually spread to working in others.

For example, it is not uncommon for documentation

committers to expand the scope of their work to in-

clude source development, or for src developers to also

maintain a set of application ports. Some of FreeBSD’s

most prolific and influential kernel developers have be-

gun life writing man pages; “upgrading” a commit bit

to allow access to new portions of the tree is a formal

but lightweight process, in which a further proposal by

a potential mentor is sent to the appropriate team for

approval. As with an entirely new committer, a formal

mentorship will take place, in which the new mentor

takes responsibility for reviewing their commits dur-

ing their earlier work with their new commit bit.

Figure 3: There is significant overlap, with many com-

mitters working in more than one area of the source

tree. (2005)

8.2 FreeBSD Core Team
The FreeBSD Core Team is the nine-member elected

management body of the FreeBSD Project, and is re-

sponsible for a variety of administrative activities. His-

torically, the Core Team consisted of a self-selected set

of the leading developers working on FreeBSD; how-

ever, in 2000, the model was changed to an elected

model in order to adopt a more sustainable model.

Every two years, nominees from the FreeBSD com-

mitter team volunteer to be placed on the role, and a

one month online election is held. The FreeBSD Core

Team then appeals for and selects a volunteer to act as

Core Secretary.

While the process of selecting the Core Team is

well-defined, the precise responsibilities of the Core

Team are not, and have evolved over time. Some ac-

tivities are administrative in nature: organizing succes-

sive elections, assisting in writing and approving char-

ters for specific teams, and approving new FreeBSD

committers. Other activities are more strategic in na-

ture: helping to coordinate developer activity, mak-

ing sure that key areas are being worked in by cajol-

ing or otherwise convincing developers they are im-

portant, and assigning authority to make significant

(possibly contentious) architectural decisions. Finally,
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the FreeBSD Core Team is responsible for maintaining

and enforcing project rules, as well conflict resolution

in the event that there is a serious disagreement among

developers.

8.3 Ports Committers, Maintainers

The FreeBSD Ports Collection is one of the most ac-

tive areas of FreeBSD work. At its heart, the ports

tree is a framework for the systematic adaptation of

third party applications to FreeBSD, as well as a vast

collection of ported applications. In 2005, there were

158 ports committers working on 16,000 application

ports. In addition to ports committers, the notion of a

ports maintainer is also important: while ports commit-

ters are often involved in maintaining dozens or even

hundreds of ports themselves, they also work to fun-

nel third party porting work by over 1,500 ports main-

tainers into the ports tree. Particularly prolific main-

tainers often make good candidates for ports commit

bits. With an average of 100 ports per committer and

11 ports per maintainer, the ports work is critical to the

success of FreeBSD.

The Port Manager (portmgr) team is responsible

for administration of the ports tree, including approv-

ing new ports committers as well as administering

the ports infrastructure itself. This involves regres-

sion testing and maintaining the ports infrastructure,

release engineering and building of binary packages

across half a dozen hardware platforms for inclusion

in FreeBSD releases, as well as significant develop-

ment work on the ports infrastructure itself. Regres-

sion testing is a significant task, involving large clus-

ters of build systems operating in parallel; even minor

infrastructure changes require the rebuilding of tens of

thousands of software packages.

8.4 Groups and Sub-Projects

The FreeBSD Project is a heavily structured and siz-

able organization with many special interest groups

working in particular areas. These groups focus on

specific technical areas, support, advocacy, deploy-

ment and support of FreeBSD in various languages

and in different countries. Some sub-groups are for-

mally defined by the project, and in some cases,

have approved charters and membership. Others exist

more informally, or entirely independent of the central

FreeBSD.org infrastructure, shipping derived software

products.

8.5 A FreeBSD Project Org Chart

While the concept of an organizational chart applies

somewhat less well to a loose-knit volunteer organiza-

tion than a traditional company, it can still be instruc-

tive.

Figure 4: Lines in this FreeBSD Project Org chart rep-

resent more than just downward delegation of authority

found in commercial organizations.

In a traditional organization chart, arrows would rep-

resent delegation of responsibility. In the FreeBSD

Project organization chart, this is only partially true:

typically arrows represent delegation of authority: i.e.,

the FreeBSD Core Team, the elected management

body of the project has assigned authority, by means of

voting to approve a written chart, for security advisory

and other Security Officer activities to the Security Of-

ficer and Security Officer team. As the organization is

volunteer-driven, delegation of of responsibility occurs

up as much as down: the larger body of FreeBSD com-

mitters select a Core Team to take responsibility for a

variety of administrative activities.

8.6 Derived Open Source Projects

FreeBSD provides components, and in some cases the

foundation, of a large number of derived open source

software projects.

• FreeSBIE, a FreeBSD-based live CD image

• m0n0wall, an embedded FreeBSD-based firewall

package

• pfSense, an extensible firewall package based on

m0n0wall

• PC-BSD, a workstation operating system based

on FreeBSD

• Darwin, the open source foundation of the Mac

OS X operating system, which includes both por-

tions of the FreeBSD kernel and user space

• DesktopBSD, a workstation operating system

based on FreeBSD

• DragonflyBSD, a FreeBSD-derived research op-

erating system project
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• FreeNAS, a FreeBSD-based network storage ap-

pliance project

In addition, FreeBSD code may be found in an

even greater number of projects that software compo-

nents developed in FreeBSD; this includes open source

projects such as OpenBSD, NetBSD, and Linux sys-

tems.

8.7 Mailing Lists
Mailing lists are the life-blood of the project, and the

forum in which almost all project business takes place.

This provides a long term archive of project activi-

ties. There are over 40 public mailing lists hosted at

FreeBSD.org, as well as a number of private mailing

lists associated with various teams, such as the Core

Team, Release Engineering team, and Port Manager

team. Mailing lists serve both the developer and user

communities. A great many other mailing lists relating

to FreeBSD are hosted by other organizations and in-

dividuals, including regional user groups, and external

or derived projects.

8.8 FreeBSD Web Pages
Web sites are a primary mechanism by which the

FreeBSD Project communicates both internally and

with the world at large. The main FreeBSD.org web

site acts as a distribution point for both FreeBSD as

software and documentation, but also as a central point

for advocacy materials. Associated web sites for the

mailing lists and mailing list archives, bug report sys-

tem, CVSweb, Perforce, and many other supporting

services are also hosted as part of the FreeBSD.org

web site.

Figure 5: Web sites play an integral role in how the

FreeBSD Project communicates with both users and

contributors.

In addition, there are a number of project-specific

web sites for FreeSBIE, TrustedBSD, PC-BSD, Desk-

topBSD, and others, which are linked from the main

FreeBSD.org web site, but are separately authored and

hosted.

8.9 Events
While electronic communications are used as the pri-

mary method of communication for most on-going

work, there is no substitute for meeting people you

are working with in-person. The FreeBSD Project has

a presence at a great many technical workshops and

conferences, such as USENIX and LinuxWorld, not to

mention a highly successful series of BSD-related con-

ferences, such as BSDCan, EuroBSDCon, AsiaBSD-

Con, NYCBSDCon, MeetBSD, and a constant stream

of local user group and developer events.

As these conferences bring together a great many

FreeBSD developers, there are often Developer Sum-

mits occurring concurrently, in which FreeBSD devel-

opers meet to present, discuss, hack, and socialize.

Summits typically consist of a formal session contain-

ing both presentations and moderated discussion, and

information activities, such as hacking and gathering

at a bar or pub.

8.10 FreeBSD Development Cycle
FreeBSD is created using a heavily branched develop-

ment model; in revision control parlance, this means

that there is a high level of concurrent work occurring

independently. The central FreeBSD src CVS reposi-

tory contains a large number of branches; the main of

these is the HEAD or CURRENT branch, where new

features are aggressively developed.

Figure 6: Branching is a key element of the FreeBSD

development model: simultaneous work on several

complete versions of FreeBSD at once allows changes

to be merged from one branch to another as they gain

stability, exposing them to successively wider testing

and use.

A series of STABLE branches contains more conser-

vative development, one per major release series, with

changes being trickled from the CURRENT branch to
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other branches as they stabilize; this process is referred

to as “Merged From Current”, or MFC. Minor releases

are cut from STABLE branches at regular intervals,

typically three to six months. Major releases are cut

around every 18 months, although sometimes less fre-

quently, and involve the creation of a new STABLE

branch; this allows extremely large features, inappro-

priate for merge to a STABLE release series, to be re-

leased as part of new major (.0) releases.

In addition to the CURRENT and STABLE

branches, RELEASE branches are used for release cy-

cles as well as for security and errata patches following

release.

7-current cutting edge development

6-stable active development with releases

5-stable legacy branch with releases

4-stable legacy branch

Branched development is also used extensively dur-

ing early feature development. Due to limitations in

CVS, discussed later, this work typically occurs in

branches in the FreeBSD Perforce server.

8.11 FreeBSD Releases
Release engineering is one of the most tricky aspects

of running any large software project, let alone a large-

scale, volunteer-run open source project. The release

team (RE) is responsible for the coordinating the com-

bination of technical and technical engineering nec-

essary to bring a FreeBSD release to fruition. With

membership approved by the Core Team, RE is given

significant leeway to steer the FreeBSD development

process, including placing administrative limits on de-

velopment in the tree (code slushes, freezes), perform-

ing CVS branching and tagging operations, not to men-

tioning begging and cajoling developers into doing that

which is necessary to make a release possible.

As FreeBSD development is centered on revision

control, the revision control operations involved in a

release are important to understanding how releases

occur. Releases occur in release branches, which

are typically branched from a -STABLE development

branch. In preparation for a release, development on

the -STABLE branch is slowed to a more conserva-

tive set of changes in order that existing new work can

stabilize. First a “code slush” occurs, in which new

features are eschewed, but bug fixing and refinement

occurs largely unhindered; any significant changes for

the release require approval by the Release Engineer-

ing team during this period. After a period of slush, a

“code freeze” is started, after which point commits to

the tree may only occur with the specific approval of

the release am. This change in process increases the

level of review taking place for changes, as well as al-

lowing the Release Engineering team to manage risk

for the release as a whole.

A series of beta test releases will be made during

the code freeze, in which major and minor problems

are incrementally identified and corrected. Once the

Release Engineering team is satisfied with the quality

of the tree, branching of the release branch may oc-

cur, which can allow more active development on the

-STABLE branch to resume. A series of release candi-

dates is used to continue to refine the release, with suc-

cessively more broad testing, especially of the install

procedure, which sees less exposure during normal de-

velopment. Once a final release candidate is created,

the release itself may occur, and the release is tagged.

Coordinated with this process for the base tree is

both a release process for the ports and documenta-

tion trees. Final third party package builds occur prior

to the release candidate series, ensuring testing and

compatibility after significant changes have been com-

pleted in the base source tree. The Port Manager team

also places a slush and freeze on the ports tree, al-

lowing testing of the packages together rather than in

isolation. The documentation tree is likewise tagged

as part of the release process; an important aspect of

the release is preparation of the release documenta-

tion, including the release notes identifying changes in

FreeBSD, finalization of translated versions, and up-

dates to the web site and documentation to reflect the

release.

The release branches continue to serve an important

role after the tagging and release of a FreeBSD ver-

sion. Once the Release Engineering team believes that

there is no risk of a re-roll of the release due to a last

minute issue, it will transfer ownership of the branch

to the Security Officer team, which will then maintain

security patches against the release in that branch. The

Release Engineering team may also coordinate the ad-

dition of errata patches to the branch for major stabil-

ity or functional problems identified after the release.

Freezes requiring approval of the Release Engineering

or Security Officer teams are not released on release

branches.

The FreeBSD 6.1 release process is fairly represen-

tative, in that it contained the typical snags and delays,

but produced a very technically successful and widely

deployed release:

25 Jan 2006 Schedule finalized

31 Jan 2006 Code freeze begins

5 Feb 2006 Ports schedule, announced

5 Feb 2006 6.1-BETA1

19 Feb 2006 6.1-BETA2

23 Feb 2006 Ports tree frozen

3 Mar 2006 6.1-BETA3

6 Mar 2006 Doc tree slush

14 Mar 2006 6.1-BETA4; ports tagged

5 Apr 2006 RELENG 6 1 branch

10 Apr 2006 6.1-RC1

17 Apr 2006 Doc tree tagged, unfrozen

2 May 2006 6.1-RC2

7 May 2006 Release tagged

7 May 2006 Build release

8 May 2006 6.1-RELEASE released
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Major (.0) releases occur in a similar manner to mi-

nor releases, with the added complexity of creating a

new -STABLE branch as well as a new release branch.

As this occurs quite infrequently, often as much as

several years apart, the process is more variable and

subject to the specific circumstances of the release.

Typically, the new -STABLE branch is created after

a long period of code slush and stabilization in the -

CURRENT branch, and occurs well in advance of the

formal release process for the .0 release. Critical issues

in this process include the finalization of application

binary interfaces (ABIs) and APIs for the new branch,

as many ABIs may not be changed in a particular re-

lease line. This includes library version updates, kernel

ABI stabilization for device drivers, and more.

Incremental releases of FreeBSD, such as the 6.1

and 6.2 releases, largely require appropriately conser-

vative strategies for merging changes from the CUR-

RENT branch, along with some amount of persuasion

of developers to address critical but less technically in-

teresting issues. Typical examples of such issues are

device driver compatibility issues, which tend to rear

their heads during the release process as a result of

more broad testing, and a few individuals bravely step

in to fix these problems.

Larger releases, such as 3.0, 4.0, 5.0, and 6.0, re-

quire much more care, as they typically culminate sev-

eral years of feature development. These have been

handled with varying degrees of success, with the

most frequent source of problems the tendency to over-

reach. While the FreeBSD 4.0 and 6.0 releases were

largely refinements and optimizations of existing ar-

chitecture, the FreeBSD 3.0 and 5.0 releases both in-

corporated significant and destabilizing architectural

changes. Both resulted in a series of incremental re-

leases on a STABLE branch that did not meet the ex-

pectations of FreeBSD developers; while these prob-

lems were later ironed out, they often resulted from a

“piling on” of new features during an aggressive CUR-

RENT development phase.

The success of the FreeBSD 6.x release series has

been in large part a result of a more moderated devel-

opment and merge approach, facilitated by the heavy

use of Perforce, which allows experimental features

to be maintained and collaborated on without merg-

ing them to the CVS HEAD before they are ready.

Prior to the use of Perforce, experimental features were

necessarily merged earlier, as there were not tools to

maintain them independently, which would result in

extended periods of instability as the base tree ceased

to be a stable platform for development. The more ma-

ture development model leaves the CVS HEAD in a

much more stable state by allowing a better managed

introduction of new features, and actually accelerates

the pace of development by allowing avoiding slow-

downs in concurrent development due to an unstable

base.

8.12 Revision Control

Most major technical activities in the project are cen-

tered on revision control. This includes the develop-

ment of the FreeBSD source code itself, maintenance

of the tends of thousands of ports makefiles and meta-

data files, the FreeBSD web site and documentation

trees (including the FreeBSD Handbook), as well as

dozens of large-scale on-going projects. Historically,

FreeBSD has depended heavily on CVS, but has both

extended it (via cvsup), and made extensive use of Per-

force as the project has grown. The FreeBSD Project is

now actively exploring future revision control options.

8.12.1 Revision Control: CVS

CVS, or the Concurrent Versions System, is the pri-

mary revision control system used by the FreeBSD

Project, and holds the authoritative FreeBSD source

trees, releases, etc. [2] This repository has over twelve

years of repository history. The FreeBSD CVS reposi-

tory server, repoman.FreeBSD.org, actually holds four

separate CVS repositories:

/home/ncvs FreeBSD src

/home/pcvs FreeBSD ports

/home/dcvs FreeBSD documentation

/home/projcvs FreeBSD project

The FreeBSD Project supplements CVS in a vari-

ety of ways; the most important is cvsup, which allows

high-speed mirroring and synchronization of both the

CVS repository itself, as well as allowing CVS check-

outs without use of the heavier weight CVS remote ac-

cess protocol. This permits the widespread distribution

of FreeBSD, as well as avoiding concurrent access to

the base repository, which with CVS can result in a

high server load. Most developers work against local

CVS repository mirrors, only using the central reposi-

tory for check-in operations.

Over time, the technical limitations of CVS have be-

come more apparent; cvsup significantly enhances the

scalability of CVS, but other limits, such as the lack

of efficient branching, tagging, and merging operations

have become more of an issue over time.

8.12.2 Revision Control: Perforce

While CVS has served the project extremely well, its

age is showing. CVS fails to offer many key features

of a distributed version control system, nor the nec-

essary scalability with respect to highly parallel de-

velopment. To address these problems, the FreeBSD

Project has deployed a Perforce server, which hosts

a broad range of on-going “projects” derived from

the base source tree. [6] The most important feature

that Perforce brings to the FreeBSD Project is support

for highly branched development: it makes creating

and maintaining large-scale works in progress possible
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through lightweight branching and excellent history-

based merging of changes from parent branches to

children.

Currently, most major new kernel development work

is taking place in Perforce, allowing these projects to

be merged to the base tree as they become more ma-

ture, avoiding high levels of instability in the CUR-

RENT branch. Perforce also makes collaboration

between developers much easier, allowing develop-

ers to monitor each other’s works in progress, check

them out, test them, and modify them. Projects that

have been or are being developed in Perforce include

SMPng, KSE, TrustedBSD Audit, TrustedBSD MAC,

SEBSD, superpages, uart, ARM, summer of code,

dtrace, Xen, sun4v, GEOM modules, CAM locking,

netperf, USB, ZFS, gjournal, and many others. CVS

remains the primary and authoritative revision control

system of the FreeBSD Project, with Perforce being re-

served for works in progress, but it plays a vital role in

the growth of the project, so cannot be ignored in any

serious consideration of how the project operates.

8.12.3 Revision Control: The Future

The FreeBSD Project is in the throes of evaluating po-

tential future distributed version control systems as a

potential successor to CVS and Perforce, with the goal

of subsuming all activity from both into a single repos-

itory. The Project’s requirements are complicated, both

in terms of basic technical requirements, as well as

being able to support our development processes and

practices. Primary of these requirements is that the en-

tire current CVS repository and history be imported

into the new repository system, a task of non-trivial

complexity, and that it support the new branched de-

velopment model used heavily in Perforce. Another

important consideration is continued support for the

cvsup infrastructure for the foreseeable future.

8.13 Clusters
The FreeBSD Project makes use of several clusters

scattered around the world, typically located at co-

location centers. These clusters are possible due to

the generous donations of companies using FreeBSD.

One of the most important aspects of these donations is

that they are not just significant donations of servers or

rack space, but donations of administrative staff time

and expertise, including hands to rearrange and handle

new and failing hardware, reinstall and update systems,

and help troubleshoot network and system problems at

bizarre hours of the day and night.

8.13.1 FreeBSD.org cluster

While there are several FreeBSD Project clusters, The

FreeBSD.org Cluster is hosted in Santa Clara by Ya-

hoo!, and is home of many of the most critical systems

making up the FreeBSD.org domain.

Mail servers hub, mx1, mx2

Distribution ftp-master, www

Shell access freefall, builder

Revision control repoman, spit, ncvsup

Ports cluster pointyhat, gohans, blades

Reference systems sledge, pluto, panther, beast

Name server ns0

NetApp filer dumpster

All of these systems have been made available

through the generous donations of companies support-

ing FreeBSD, such as Yahoo!, NetApp, and HP. The

systems are supported by remote power, serial con-

soles, and network switches.

8.13.2 Other Clusters

The FreeBSD.org cluster hosted at Yahoo! is not

the only concentration of FreeBSD Project servers.

Three other major clusters of systems are used by the

FreeBSD Project:

• The Korean ports cluster hosted by Yahoo! in Ko-

rea provides a test-bed for ports work.

• allbsd.org in Japan provides access to many-

processor Sun hardware for stress and perfor-

mance testing.

• The Sentex cluster hosts both the FreeBSD Se-

curity Officer build systems, as well as the Net-

perf cluster, a network performance testing clus-

ter consisting of a dozen network booted systems

with gigabit networking. This cluster has also

been used to test dtrace, hwpmc, and ZFS.

• The ISC cluster hosts half of FreeBSD.org, as

well as a large number of ports building systems,

the FreeBSD.org Coverity server, test systems,

and more.

8.14 Conflict Resolution
Conflict resolution is a challenging issue for all orga-

nizations, but it is especially tricky for volunteer orga-

nizations. FreeBSD developers are generally charac-

terized by independence, a good sense of cooperation,

and common sense. This is no accident, as the com-

munity is self-selecting, and primary criteria in eval-

uating candidates to join the developer team are not

just technical skills and technical contribution, but also

the candidate’s ability to work successful as part of a

larger global development team. Conflict is success-

fully avoided by a number of means, not least avoiding

unnecessary overlap in work areas and extensive com-

munication during projects that touch common code.

Despite this, conflicts can and do arise: some con-

sist purely of technical disagreements, but others result

from a combination of the independence of spirit of

FreeBSD developers and the difficulty of using solely
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online communications to build consensus. Most con-

flicts are informal and self-resolving; on the rare oc-

casion where this is not the case, the FreeBSD Core

Team is generally responsible for mediating the con-

flict. For purely technical disagreements, reaching a

decision by careful consideration (and fiat) is often

successful, relying on the elected authority of the Core

Team to make a final decision. As technical disagree-

ments are often only the trigger in more serious con-

flicts, the Core Team typically selects a mediator (usu-

ally a Core Team member) to help work to improve

communications between the disagreeing parties, not

just pick a “right” technical solution.

8.15 Bike sheds
“Bike sheds” are a very special kind of conflict found,

most frequently, in technical communities. First de-

scribed by Parkinson in a book on management, the

heart of the issue of the bike shed lies in the observa-

tion that, for any major engineering task, such as the

designing of a nuclear power plant, the level of exper-

tise and investment necessary to become involved is

so significant that most contributions are productive;

however, the building of a bike shed is something that

anyone (and everyone) can, and will, express an opin-

ion on. [5] Strong opinions prove easiest to have on

the most trivial details of the most unimportant topics;

recognizing this problem is key to addressing it. Bike

sheds, while not unique to FreeBSD, are an art-form

honed to perfection by the project. Since they have be-

come better understood, they have become much easier

to ignore (or dismiss once they happen). This terminol-

ogy has now been widely adopted by many other open

source projects, including Perl and Subversion.

9 Conclusion

The FreeBSD Project is one of the largest, oldest, and

most successful open source projects. Key to the idea

of FreeBSD is not just software, but a vibrant and ac-

tive online community of developers, advocates, and

users who cooperate to build and support the system.

Several hundred committers and thousands of contrib-

utors create and maintain literally millions of lines of

code in use on tens of millions of computer systems.

None of this would be possible without the highly

successful community model that allows the FreeBSD

Project to grow over time, as well as permitting other

projects to build on FreeBSD as a foundation.
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Abstract

Mobile IPv6 and Network Mobility Basic Support
(NEMO BS) are the IETF standard mobility proto-
cols for IPv6. We implemented these protocols and
we call the implementation SHISA. SHISA supports
most of the features in these mobility protocol specifi-
cations and has high level interoperability with other
stacks compliant to the specifications. We are now
working towards adapting the SHISA code to fit the
latest BSD source tree. In this paper we explain the
detailed implementation design of the stack, current
status of the porting work and the future plans of our
project.

1 Introduction

The rapid growth of the IPv4 Internet raised a concern
of the IPv4 address exhaustion. IPv6 was designed as
the essential solution of the problem. We are now on
the transition period from the IPv4 Internet to the
IPv6 Internet. As a result of the transition, a vast
number of IPv6 devices connected to the Internet us-
ing various communication technologies will appear
in the future. The devices will not only be computers
and PDAs but also cars, mobile phones, sensor devices
and so on. Since many devices will potentially move
around changing its point of attachment to the Inter-
net, mobility support for IPv6 is considered necessary.
The IETF has discussed the protocol specification and
finally standardized two IPv6 mobility protocols, Mo-
bile IPv6 [1] for host mobility and Network Mobility
Basic Support (NEMO BS) [2] for network mobility.

When we deploy a protocol, it is one of the efficient
ways to provide the protocol stack as open source soft-
ware. The developers of the protocol stack can get
many feedback from worldwide users and can enhance
their implementation. We implemented the mobility
protocol stack, called SHISA1 [3, 4], that supports
both Mobile IPv6 and NEMO BS to provide a full

1SHISA was named after a traditional roof ornament in Ok-
inawa Japan, where we had the first design meeting.

featured mobility stack on top of BSD operating sys-
tems as a part of the KAME project activity [5], and
released the stack as open source software. After the
KAME project concluded in March 2006, we started
to adapt the stack to fit the latest BSD tree aiming to
merge the mobility code.

This paper presents the current status of our work
on IPv6 mobility and future plans. We will provide the
basic knowledge of Mobile IPv6 and NEMO BS in Sec-
tion 2 and discuss the design principle and implemen-
tation detail in Section 3 and 4. Section 5 discusses
the remaining stuffs to be designed and implemented
to give advanced mobility features and also discusses
the future plans of our project. Section 6 concludes
this paper.

2 Mobile IPv6 and NEMO BS
Overview

Mobile IPv6 is a protocol which adds a mobility func-
tion to IPv6. Figure 1 illustrates the operation of
Mobile IPv6. In Mobile IPv6, a moving node (Mobile
Node, MN ) has a permanent fixed address which is
called a Home Address (HoA). HoAs are assigned to
the MN from the network to which the MN is orig-
inally attached. The network is called a Home Net-
work. When the MN moves to other networks than
the home network, the MN sends a message to bind
its HoA and the address assigned at the foreign net-
work. The message is called a Binding Update (BU )
message. The address at the foreign network is called
a Care-of Address (CoA) and the networks other than
the home network are called Foreign Networks. The
message is sent to a special node, called a Home Agent
(HA) located in the home network. The HA replies to
the MN with a Binding Acknowledgement (BA) mes-
sage to confirm the request. A bi-directional tunnel
between the HA and the CoA of the MN is established
after the binding information has been successfully ex-
changed. All packets sent to the HoA of the MN are
routed to the home network by the Internet routing
mechanism. The HA intercepts the packets and for-
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Figure 1: Basic Operation of Mobile IPv6.

wards them to the MN using the tunnel. Also, the
MN sends packets using the tunnel when communi-
cating with other nodes. The communicating nodes
(called as Correspondent Nodes, CN ) do not need to
care about the location of the MN, since they see the
MN as if it is attached to the home network.

In Figure 1, the communication path between the
MN and its peer node is redundant since all traffic is
forwarded through the HA. Mobile IPv6 allows an MN
to optimise the path to an IPv6 node which is aware
of the Mobile IPv6 protocol by sending a BU mes-
sage. When an MN send a BU message to a CN, the
MN must perform a simple address ownership verifi-
cation procedure called Return Routability (RR). The
MN sends two messages ( Home Test Init (HoTI ) and
Care-of Test Init (CoTI ) messages) to the CN, one
from its HoA and the other from its CoA. The CN
responds these two messages with Home Test (HoT )
and Care-of Test (CoT ) messages with cookie values.
The MN then generates secret information using these
two cookies and sends a BU message cryptographically
protected with the secret information. Once the CN
accepts the BU message, the MN can directly send a
packet to the CN from its CoA. To provide the HoA
information to the CN, the MN stores its HoA in a
Destination Options Header as the Home Address op-
tion (HAO). The option is newly defined in the Mobile
IPv6 specification. The CN can also directly send a
packet to the MN using the Routing Header Type 2
(RTHDR2 ), which is a new type of a routing header.
This direct path is called a Route Optimized (RO)
path.

NEMO BS is an extension of Mobile IPv6. The
basic operation of a moving router (Mobile Router,
MR) is same as that of an MN except the MR has
a network (Mobile Network) behind it. The network
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Care-of Address
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Figure 2: Basic Operation of NEMO BS.

prefix is called a Mobile Network Prefix (MNP). A
node in the mobile network, which is called a Mobile
Network Node (MNN ), can communicate with other
nodes as if they are attached to the home network,
thanks to the tunneling between the HA and the MR.
NEMO BS does not provide the RO feature. Figure 2
depicts the operation of NEMO BS.

3 SHISA Design

Mobile IPv6 and NEMO BS are layered between the
Network Layer and Transport Layer. The first version
of our mobility stack, known as the KAME Mobile
IPv6 stack, was implemented as a part of the kernel as
other Network Layer and Transport Layer protocols.

When the Mobile IPv6 specification was published
as an RFC, we were considering to extend the features
of the mobility stack. We thought it would not be a
good idea to keep all mobility functions in the ker-
nel, considering its extensibility and maintainability2.
We redesigned the entire stack and moved most of the
protocol functions to user space. In the process of
redesign, we also referred the basic design of another
Mobile IPv6 stack (SFCMIP [7]) for BSD that was
being developed at Keio University. The remaining
functions in the kernel was packet forwarding process-
ing. All the mobility signal processing and binding in-
formation management processing were moved to user
space. The design gives us the following benefits.

• Easy development and maintenance: Since the
signaling processing of Mobile IPv6 and NEMO

2There was a separate project that provided a NEMO BS im-
plementation [6] based on the KAME Mobile IPv6 stack, which
was also implemented in the kernel.
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BS is complicated, it is better to implement it
in user space. We can develop and debug the
complex part of the protocol easier than doing it
in the kernel, without reducing packet forwarding
performance.

• Extensibility for additional features: Developing
user space programs is easier than the kernel pro-
gramming in most cases and for most users. Mov-
ing the core mobility implementation from the
kernel to user space will encourage third party
developers to add new features.

• Minimum modification of the kernel code: When
considering to merge the developed code into
BSD trees, the smaller amount of kernel modi-
fication is the better. Moving signaling part to
the user space reduces the amount of kernel mod-
ification.

In the user space, we also divided the entire stack
into 6 pieces as follows.

• MN functions

• MR functions

• HA functions

• RO responder functions

• Movement detection functions

• NEMO BS tunnel setup functions

The design allows users to chose only necessary com-
ponents when they build mobility aware nodes. For
example, if one wants to build an MN that does not act
as an RO responder, he can disable it. The design also
allows to replace components with their own imple-
mentation. Especially, the ability to replace the move-
ment detection mechanism is useful when deploying
mobility services in a specific network infrastructure
that supports a good movement detection mechanism,
such as the Layer 2 movement notification scheme. In
that case, the system integrator can create a special
movement detection program, keeping other signaling
processing code untouched.

The components, including the kernel, communi-
cate each other through a newly designed socket
domain dedicated to mobility information exchange.
When a user program put some information (e.g.
binding information) to the kernel, this socket domain
is used. The socket domain is used to exchange such
information between user space programs too. It can
also be used as a notification mechanism from the ker-
nel to user space programs. When the kernel has to

notify information that can only be retrieved inside
the kernel, such as extension header processing errors
or tunneled packet input events, the kernel writes the
event information to the socket domain so that all the
listening programs of the socket in user space can re-
ceive the event data.

4 Implementation

SHISA was originally developed on top of the KAME
IPv6 stack [9] for NetBSD 2.0 and FreeBSD 5.4. We
ported SHISA to the NetBSD-current tree as the first
step of porting effort. There are two reasons why we
chose NetBSD as the first platform for the porting
work. The first reason is that it supports various kinds
of architectures. The mobility functions are useful es-
pecially when it is integrated to a moving entities such
as PDAs and cars or trains, and so on. They usually
use an architecture that runs with limited resources.
NetBSD supports many such architectures that is suit-
able for embedded use, and we wanted to realize such
small devices using our code. The other reason is the
difference between the KAME tree (that was based
on NetBSD 2.0) and the latest NetBSD is relatively
small compared to other BSD variants that KAME
supported. This makes it easier to port the SHISA
code from KAME to NetBSD-current.

Figure 3 shows the relationship of the SHISA mod-
ules. The objects with solid lines are newly imple-
mented modules. The dotted line objects exist in the
original BSD system and the shaded ones of them have
been modified for the SHISA system.

There are 6 user space programs; mnd, babymdd,
cnd, mrd, nemonetd and had. Each program han-
dles, the MN signaling messages, the movement de-
tection procedure, the RO responder signaling mes-
sages, the MR signaling messages, the tunnel setup
procedure for NEMO BS, and the HA signaling mes-
sages respectively. The binding database that corre-
sponds the HoA and CoA of an MN is maintained by
mnd and mrd on the MN/MR side, and by cnd and
had on the CN/HA side. The subset information of
the databases that is necessary for the packet input
and output processes in the kernel is injected by these
programs using the Mobility socket discussed in Sec-
tion 4.1.

The communication interface used between the ker-
nel and the user space programs, and between the
user space programs is provided by the newly im-
plemented Mobility socket domain (AF MOBILITY).
The mechanism and message formats used in the do-
main are similar to the Routing socket [10]. Unlike
the Routing socket, we use this socket to exchange
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Figure 3: The relationship of the SHISA modules.

mobility related information even between user space
programs. For example, the movement detection pro-
gram (babymdd) uses this socket to notify other pro-
grams of movement events through the socket when it
considers the node is attached to a new network. The
socket is also used as a broadcasting channel from the
kernel to user space programs. For example, when the
kernel of a mobile host receives a tunneled packet from
a correspondent node, it notifies the mnd program of
the fact so that it can start the route optimization
procedure. Such information is not usually available
from the user space.

We created two new pseudo interfaces, mip and
mtun. The mip interface represents the home network
of an MN/MR and keeps HoAs of the node. If an
MN/MR has more than one home network, the node
will have multiple mip interfaces. The mtun interface
is used as a tunnel interface between an MR and its
HA. The interface is basically a copy of the gif in-
terface with some extension to keep the next-hop in-
formation of the interface. The mtun interfaces are
controlled by the nemonetd program based on the
signaling messages exchanged between an MR and an
HA by monitoring the Mobility socket. The mip and
mtun interfaces are discussed in Section 4.2 and 4.3

respectively.
Mobile IPv6 and NEMO BS extended IPv6 exten-

sion headers. These protocols use a new destina-
tion option (HAO) and a new routing header type
(RTHDR2). The processing code is implemented by
extending the existing extension header processing
code in the kernel, because these headers cannot be
handled in user space. The normal packets, that are
not mobility signal messages, are automatically pro-
cessed based on the binding information stored in the
kernel by the extended processing code. The signaling
packets are sent and received by the user space pro-
grams using the socket API specified in RFC4584 [11].

4.1 Mobility Socket: AF MOBILITY

The Mobility socket [8] is implemented as a variant of
the raw sockets. The usage of this socket is similar to
that of the Routing socket. The mobility socket can
be opened as follows.

s = socket(AF_MOBILITY, SOCK_RAW, 0);

At the this moment, there are 12 message types as
shown in Table 1.
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Type Description

NODETYPE_INFO Set or reset the operation mode
(MN, MR, HA or CN).

BC_ADD Add a binding cache entry.

BC_REMOVE Remove a binding cache entry.

BC_FLUSH Remove all binding cache entries.

BUL_ADD Add a binding update list entry.

BUL_REMOVE Remove a binding update list en-
try.

BUL_FLUSH Remove all binding update list en-
tries.

MD_INFO A hint message that indicates the
movement of an MN.

HOME_HINT A hint message from the kernel
that notifies returning home of an
MN from the kernel.

RR_HINT A hint message from the kernel
that indicates receiving or sending
a bi-directional packet.

BE_HINT A hint message from the kernel
that an error message has to be
sent due to protocol processing er-
ror in the kernel.

DAD Request the kernel to perform the
DAD (Duplicate Address Detec-
tion) procedure for a specific ad-
dress.

Table 1: The Mobility socket message types.

The NODETYPE_INFO message enables (or disables)
mobility functions in the kernel. The user space pro-
grams issue this message to enable (or disable) spe-
cific mobility processing code in the kernel, for exam-
ple, the mnd program issues this message to enable
mobile node functions in the kernel such as the bind-
ing update list management and the extension header
processing. The BC_* messages are used by the had
and cnd programs to add or remove binding cache
entries in the kernel. The BUL_* messages are used
for binding update list entries by the mnd and mrd
programs similarly. The MD_INFO message is issued
by the babymdd program to notify the node move-
ment of the mnd or mrd program. As discussed ear-
lier, any system integrator can prepare their specific
movement detection program that issues the MD_INFO
message for better or optimized performance of the
node movement. The *_HINT messages are issued by
the kernel to notify the events that cannot be obtained
in user space of user space programs. The HOME_HINT
message is issued when an MN/MR returns home by
comparing received prefix information in a Router Ad-
vertisement message and the configured home network
prefix. When receiving this message, the MN/MR
stops mobility functions.

Flag Description

IN6_IFF_HOME The address is an HoA.

IN6_IFF_DEREGISTERING The address is being
de-registered.

Table 2: The address flags used by an HoA.

The address information in these messages are
stored in the form of the sockaddr structure so that
any kind of address family can utilize this socket mech-
anism. IPv6 is the only supported address family at
this moment.

4.2 The mip Interface and Home Ad-
dress

The mip interface represents the home network of an
MN/MR. This interface is used to keep the HoAs of an
MN/MR when the node is in foreign networks. The
HoAs are assigned to the physical network interface
attached to the home network of the MN/MR while it
is at home. However the physical interface is used to
attach to a foreign network when the node leaves from
the home network. In this case, the HoAs are moved
from the physical interface to the mip interface.

The address assigned as an HoA has special flags as
shown in Table 2. All HoAs have the IFF_HOME flag.
The IFF_HOME flag is used by the source address selec-
tion procedure to prefer an HoA as a source address.
The IFF_DEREGISTERING flag is used in the return-
ing home procedure. The IFF_DEREGISTERING flag is
added while an MN/MR is performing de-registration
procedure of its HoA when it returns to home. Until
the procedure has successfully completed, the HoA is
not valid and is not used for communication.

4.3 The mtun Interface

The mtun interface is used when the NEMO BS func-
tion is used. This interface is used by an MR and an
HA to create an unnumbered tunnel between them.
The physical endpoint address of the tunnel is the CoA
of the MR and the HA’s address. On the HA, the traf-
fic addressed to the mobile network of the MR is sent
to the mtun interface established between it and the
MR that manages the mobile network. On the MR,
the mtun interface is set as the default route of the
outgoing packets. All packets generated by the MR
or the nodes in the mobile network of the MR will be
tunneled to the HA.

Since the mtun interface is used as the default route
on the MR, the loop condition occurs if we do not
specify the next hop router when sending tunneled
packets. Figure 4 shows the situation. When the MR
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sends a packet to the default route that is the mtun
tunnel, the MR creates an encapsulated packet whose
outer source is its CoA and the outer destination is the
HA. The output function of the encapsulated packet
will try to send it based on the routing table and it
will try to send it to the default route again.

To avoid this problem, the mtun interface keeps the
next hop router’s address in its interface structure.
The information is retrieved from the default router
list managed by the kernel. The nemonetd program
checks the default router list and picks up one of them
that are attached to the same network as the CoA of
the MR. The next hop information is stored by the
nemonetd program using I/O control message of the
mtun interface. When sending an encapsulated packet,
the output function of the mtun interface will add the
next hop information as an IPv6 packet option.

As we have mentioned already, the mtun interface is
originally copied from the gif interface. The only dif-
ference is the next hop information storing mechanism
and output mechanism using the information.

4.4 Sending and Receiving Signaling
Messages

All the signaling messages are processed by the user
space programs. The signaling messages are carried
by the Mobility Header which is introduced by the
Mobile IPv6 specification. Although the header is de-
fined as one of the IPv6 extension headers, it is treated
as a final header at this moment. Therefore, there is
no following upper layer or other extension headers

after a Mobility Header. To support this header, we
implemented a simple input validation routine in the
kernel and used the raw IPv6 packet delivery mech-
anism. The Mobility Header processing function is
added using the protocol switch mechanism. When a
packet whose last header is a Mobility Header (pro-
tocol number 135) is input, then the mip6_input()
function is called.

As shown in the following code fragment, the
mip6_input() function performs the validation check
of the input packet and calls the raw IPv6 input func-
tion (rip6_input()) to deliver the packet to applica-
tions. The application with the Mobility socket will
receive all Mobility Header messages.

int

mip6_input(mp, offp, proto)

struct mbuf **mp;

int *offp, proto;

{

validation of the input packet.

/* deliver the packet using Raw IPv6

interface. */

return (rip6_input(mp, offp ,proto));

}

When sending a Mobility Header packet, the same
output function as that of the raw IPv6 socket
(rip6_output()) is used.

4.5 Extension Header Processing

The Mobile IPv6 specification defines a new destina-
tion option, the HAO option, to carry the HoA of an
MN to an HA or a CN, and the RTHDR2 to deliver
packets to an MN directly from an HA or a CN. We
simply extended the existing code to support these
new messages, since both Destination Options Header
and Routing Header processing code had been already
implemented as a basic IPv6 feature in NetBSD.

The input processing code of the HAO option is
implemented in the dest6_input() function. The
function checks an HAO option and related binding
cache entry of the HoA included in the HAO option.
If the cache entry exists, the source address of the
input packet and the HoA are swapped. The trans-
port layer and above layer will process the HoA as the
source of the packet. Note that this operation is a
kind of source spoofing operation and we need to ver-
ify the operation is safe. The existence of the binding
cache entry is used for the validation.

The exception of the swapping is a BU message.
A BU message has an HAO option to request a peer
node to create a binding cache entry that binds the
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HoA in the HAO option and the CoA stored in the
source address field of the IPv6 header. When a node
receives a BU message first time, there is no binding
cache entry, and we cannot rely on the cache existence
to validate the message. In the Mobile IPv6 specifica-
tion, it is specified that a BU message is protected by
some cryptographic mechanisms. When an MN sends
a BU message to its HA, the message is protected by
the IPsec mechanism. When an MN sends a BU mes-
sage to a CN, the message is protected by the secret
created through the RR procedure. If a bogus MN
tries to send a BU message to a victim HA, then the
message will be dropped during the IPsec header pro-
cessing. If a bogus MN tries to send a BU message to
a CN, then the message will be delivered to the cnd
program because it does not have any IPsec headers.
The cnd program checks if the message is protected
by the secret created by the RR procedure, and drop
it if it is not protected. Once the message is accepted,
the had or cnd program creates a new binding cache
entry for the message. The following packets with an
HAO option will be accepted.

The input processing of the RTHDR2 is imple-
mented in the route6_input() function. The func-
tion calls the rthdr2_input() function when the
type number of the input routing header is 2. The
RTHDR2 includes the HoA of an MN. The basic pro-
cedure is same as that of the Type 1 Routing Header
(RTHDR1). The destination address of the input
IPv6 header and the address in the Routing Header
are swapped. Unlike the RTHDR1, the RTHDR2
only include one address and the address must be
an HoA. The rthdr2_input() validates the RTHDR2
and swaps the addresses if it is valid. Since the origi-
nal IPv6 destination address (which is the CoA of an
MN) and the address in the RTHDR2 (the HoA of the
MN) both belong to the same MN, a peer node can
send a packet directly to the MN without using the
tunnel established between the MN and its HA.

The output processing of these headers is handled
by the ip6_output() function. Since the mobility
functions are transparent to all the applications, the
packet passed to the ip6_output() function does not
have any mobility related data, except signaling pack-
ets that are handled in the user space programs and
have extension headers specified by the user space pro-
grams. The ip6_output() function checks binding
update list entries and binding cache entries at the be-
ginning of the packet processing, and inserts a HAO
and/or a RTHDR2 if there is a binding entry related
to the addresses of the outgoing IPv6 packet. For ex-
ample, if the packet’s source address is the HoA of
an MN and the MN has a valid binding update list
entry of the HoA, then a HAO option, that includes

the CoA of the MN stored in the binding update list
entry, is created and inserted to the outgoing packet.
Similarly, a RTHDR2 is also inserted if there is a valid
binding cache entry that is related to the destination
address of the outgoing packet.

4.6 Tunneling

When an MN/MR sends packets to CNs, or when an
MR forwards packets from its mobile network to the
nodes outside, the nodes encapsulate packets to its
HA using the tunnel established between them. The
same operation is performed in the reverse direction.
In the SHISA stack, we use two different encapsulat-
ing mechanisms for tunneling. One is the mechanism
for packets sent/delivered to a moving node itself, the
other is for packets sent/delivered to the nodes in a
mobile network.

In fact, these two tunnels have the same function.
The reason why we have two different tunnels is that
the stack has been build step-by-step based on the pre-
vious KAME Mobile IPv6 design. In KAME Mobile
IPv6 that did not support NEMO BS, the tunneling
was implemented as a part of packet processing in the
kernel. SHISA re-used the design as a Mobile IPv6
tunneling mechanism. When we started implementing
NEMO BS in SHISA, we chose to use a specific tunnel
interface (the mtun interface) as a tunneling mecha-
nism for mobile network nodes, so that the nemonetd
programs can easily control the tunnel endpoints. We
do not think the current design is the best and keep
discussing to revise the design. Section 5 mentions
this topic further.

Figure 5 shows the output flow of tunneling packets
on an MN/MR. When an MN sends a tunneled packet,
the mip6_tunnel_output() function is used. For the
forwarding packets from the mobile network of an MR,
the mtun_output() which is the output function of the
mtun interface is used instead.

Figure 6 shows the input flow of tunneling pack-
ets on an MN/MR. Similar to the output case,
the tunneled packets sent to the moving node it-
self is processed by the special input function
mip6_tunnel_input(). For the forwarding packets to
the mobile network nodes, the mtun_input() function
handles tunneled packets.

4.7 Intercepting Packets

Thanks to the backward compatibility of Mobile IPv6,
all IPv6 nodes can communicate with an MN/MR or
nodes inside the mobile network of the MR. In this
case, all packets sent to the moving entities are routed
to the home network of them. The HA of these mov-
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Figure 5: The output flow of a tunneled packet on an
MN/MR.

ing entities have to intercept the packets and forward
them properly.

When an HA intercepts packets sent to the HoA of
an MN or MR, the HA uses proxy Neighbor Discovery
mechanism. The proxy is started after the HA receives
a valid BU message for registration from the MN/MR,
and is stopped when it receives a de-registration BU
message. The intercepted packets are forwarded using
the tunneling mechanism. In contrast to the packets
sent to HoAs, the packets sent to the mobile network
of the MR are processed by the normal forwarding
mechanism. The HA has a routing entry for the MNP
whose outgoing interface is set to the tunnel interface.
Figure 7 shows the flow.

The input processing of the tunnel packets at
an HA is a simple forwarding processing. The
only difference is that the packets originated by an
MN/MR itself are input by the special input function
mip6_tunnel_input(). Figure 8 shows the flow. The
mip6_tunnel_input() function is defined as a part
of the protocol switch structure for Mobile IPv6 as
shown in Figure 9. The protocol switch structure is
used internally in the kernel when the Mobile IPv6
function is enabled.

4.8 Movement Detection

Movement detection is also performed in user space in
the SHISA stack. At this moment, we are providing
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Figure 6: The input flow of a tunneled packet on an
MN/MR.
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Figure 7: The output flow of a tunneled packet on an
HA.

a simple detection program babymdd as a sample code
for developers of more enhanced detection program.
The babymdd programs detects the node movement
based on the validity of the CoA currently assigned. In
the BSD Operating Systems, all IPv6 addresses have
a special flag called DETACHED that is proposed in
[12]. The flag means that the address is valid but
the router that advertised the prefix of the address is
unreachable. This implies that an MN/MR once re-
ceived prefix information and formed an address from
the prefix, but left the network.

The babymdd program sends a Router Solicitation
message when the status of the network interfaces used
to connect the node to the Internet is changed from
‘down’ to ‘up’. If the node leaves and attaches to a
new network, then the old routers will become un-
reachable by the Neighbor Unreachability Detection

874



struct ip6protosw mip6_tunnel_protosw =

{ SOCK_RAW, &inet6domain, IPPROTO_IPV6, PR_ATOMIC|PR_ADDR,

mip6_tunnel_input, rip6_output, 0, rip6_ctloutput,

rip6_usrreq,

0, 0, 0, 0,

};

Figure 9: The tunneled packet protocol switch entry.
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Figure 8: The input flow of a tunneled packet on an
HA.

(NUD) mechanism. As a result the corresponding ad-
dresses formed from the prefix advertised by these old
routers will become detached. If the CoA is one of
these detached addresses, the babymdd program will
search other appropriate address and inform the mnd
or mrd program of the new CoA by the MD_INFO Mo-
bility socket message.

5 Discussion

SHISA provides full functional Mobile IPv6 and
NEMO BS implementation. We have conformed its
interoperability with other implementations through
a couple of interoperability test events. However we
still need to develop the SHISA stack in order to sup-
port extensions of Mobile IPv6/NEMO BS, which are
currently discussed in the IETF, and to support more
operating platforms. In this section, we explain some
of these remaining stuffs.

5.1 Multiple Tunnel Mechanisms

As discussed in Section 4.6, the SHISA stack is cur-
rently providing two different tunneling mechanisms
related to mobility function for the same purpose, one
for Mobile IPv6 and the other for NEMO BS. When
a node is acting as an MR, it can also work as an
MN. However the packet tunneled to its HA goes to

W-CDMA

Internet

Wireless
LAN

HA

MN

CN

WLAN
access point

W-CDMA
access point

Bulk
traffic

Reliable
traffic

Figure 10: The usage scenario of multiple network
interfaces simultaneously.

the mtun interface when it is an MR, and goes to the
internal in-kernel tunnel function if it is an MN. This
causes not only the code duplication problem but also
cases functional restrictions.

The IETF MONAMI6 WG is standardizing the
mechanism to utilize multiple network interfaces at
the same time on Mobile IPv6 and NEMO BS. For
example, if a mobile device has a wireless LAN inter-
face and a W-CDMA interface, it might want to utilize
both of them according to the local traffic policy. The
mobile device can use the wireless LAN interface as
a cheap bulk data transfer interface and use the W-
CDMA as a reliable interface (Figure 10). Recently,
as many mobile devices often have multiple commu-
nication interfaces, utilizing them simultaneously is
urgent matter for Mobile IP and NEMO. The Mul-
tiple Care-of Addresses Registration (MCoA) mecha-
nism [13] proposed at the MONAMI6 WG provides a
method to register more than one CoA at the same
time.

The current SHISA implementation supports
MCoA for NEMO BS as described below. The tunnel
mechanism of NEMO BS is implemented as the mtun
interface as discussed in Section 4.3. The current de-
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sign of the MCoA mechanism in SHISA is to define
the same number of mtun interfaces as the number of
physical network interfaces, and to bind each physical
interface to a mtun interface. The default route of an
MR is set to one of the mtun interfaces (for example,
mtun0) and packet flow is distributed using a packet
filter mechanism, such as IP Filter [14] or PF [15]. If
a wireless LAN interface wi0 is bound to the mtun0
interface, and a W-CDMA interface ppp0 is bound to
the mtun1 interface, then we may use the rules de-
scribed in Figure 11 to distribute traffic. With these
rules, all traffic except the SSH traffic is sent to the
mtun0 interface which is bound to the wireless LAN
interface. This mechanism cannot be used with the
Mobile IPv6 case of the SHISA implementation, be-
cause the mtun interface is not used in Mobile IPv6.

We once tried to solve this problem using the PF
mechanism for Mobile IPv6 too. In the trial, we
stopped using the special in-kernel tunnel mechanism
and passed all the Mobile IPv6 traffic to the mtun in-
terface. It worked with one network interface, however
we noticed that we would have a problem when we use
multiple network interfaces and the RO communica-
tion.

The stack has multiple binding update list or cache
entries when the node registers multiple CoAs to its
HA. When the RO is used, the source address of the
packet (which is one of the CoAs of the MN) must
be decided based on the local flow distribution policy.
That means, we need two policy judgement points for
the essentially same traffic, one in the CoA selection
part, and the other in the packet filtering part.

We are now designing a new tunnel mechanism for
mobility functions. In the idea, the moving node
always outputs packets to a special tunnel interface
bound to the home network of the node (similar to
the mip interface). In the output function, the local
traffic distribution policies are applied to the packets
and they are redirected to the HA with an encapsu-
lating header with a proper CoA of the node based
on the policy. With this procedure, we can put both
the CoA selection task and policy application task in
the same place that will solve the problem described
above. We will verify if this is feasible to implement.

5.2 IPsec Policy Management

As specified in RFC, some of the signaling messages
between an MN and an HA must be protected by
the IPsec mechanism. In these messages, the HoT
and HoTI messages cause IPsec configuration problem
when a node returns to home. These messages must
be protected by the ESP tunnel mechanism while the
node is in a foreign network. In the current implemen-

spdadd HoA ::/0 135 1,0 -P out ipsec

esp/tunnel/HoA-HA/;
spdadd ::/0 HoA 135 3,0 -P in ipsec

esp/tunnel/HA-HoA/;

Figure 12: IPsec policy entries to protect the HoTI
and HoT messages

tation, the node has static IPsec tunnel policy entries
for these messages. Figure 12 is a sample policy defi-
nition for these packets. 135 is the protocol number of
the Mobility Header and 1 and 3 represents the HoTI
and HoT message types respectively.

These tunnels are used only the node is in a foreign
network and must not be used at home. This restric-
tion cases a problem. An MN has to de-register its
binding information registered in CNs when the MN
returns to home. To de-register binding information,
the MN needs to perform the RR procedure that re-
quires HoTI/HoT message exchange. The HoTI mes-
sage sent from the node will match the IPsec policy
statically installed on the MN and may be dropped
at the tunnel end point (the HA). The HoT messages
will come from CNs directly to the MN, because the
MN has already returned to home and the HA is not
proxying its address anymore. The IPsec policy will
discards the incoming HoT message because it is not
protected by the IPsec mechanism as required in the
policy entry.

To solve this problem, the mobility stack must inac-
tivate all the policy related to the HoTI/HoT messages
installed in the kernel. Currently, there is no stan-
dard way to inactivate the policy entries, other than
removing them. Removing policy entries may work if
the node uses IPsec only for Mobile IPv6. However if
other communication frameworks are also using IPsec
policy database, then removing and adding policy en-
tries may influence the policy matching order, that
may result in unexpected IPsec processing. We are
considering a new policy management message to ac-
tivate/inactivate a specific policy entry and planning
to implement and test the mechanism.

5.3 Standard Mobility Interface

We have moved all the signal processing code to user
space. That means, if the kernel supports packet for-
warding mechanisms for Mobile IPv6 and NEMO BS,
then we can use the same signal management pro-
gram on different kernels. We defined a generic mo-
bility information exchange mechanism as the Mobil-
ity Socket for this purpose. The messages used in the
socket is basically platform independent. Thus, if we
can cleanly separate kernel functions and user space
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pass out route-to mtun0 inet6 from MNP::/64 to any

pass out route-to mtun1 inet6 from MNP::/64 to any port 22

Figure 11: The filter rules to distribute mobile network traffic to multiple NEMO BS tunnels

functions, we can develop the kernel and the signal
processing program independently. SHISA now runs
only on BSD operating systems that support the Mo-
bility Socket and in-kernel mobility functions, however
it can run on other operating systems if they provide
the Mobility Socket interface and equivalent functions
in their kernel.

One obvious missing feature of the current Mobility
Socket implementation is a message filtering mecha-
nism. Currently, all the messages sent by mobility en-
tities are delivered to all the listening sockets regard-
less of its necessity. However, some Mobility Socket
messages are meaningless to some of the mobility en-
tities. For example, the HA module may not want
to receive any messages related to MN/MR functions.
Suppressing unnecessary messages will alleviate the
exhaustion of the socket buffer when there are many
messages.

We once submitted the basic specification (not
including the filtering mechanism) of the Mobility
Socket at the IETF, but more than one year has passed
since the draft expired. We may need to resume the
standardization work when we have gotten clear un-
derstanding of the roles in the kernel and user space
though the development.

5.4 IKE Interaction

At this moment, the SHISA stack works with IPsec
security associations (SAs) manually configured. The
manual operation works only with a small number of
nodes and it is not scalable. The essential solution is
the Internet Key Exchange (IKE) protocol that pro-
vides a dynamic SA generation mechanism. IKE cre-
ates a pair of SA between two nodes, however the
constructed SA is based on the addresses used by the
IKE procedure. This causes a problem in mobility
environment. In the Mobile IPv6 (and NEMO BS)
case, the communication is originated from the HoA
of the MN/MR. Because the HoA cannot be used for
communication, the MN/MR cannot start the IKE
procedure using their HoA.

The solution is to use CoAs for IKE communication
and creates SAs for HoA during the IKE negotiation3.
How to use IKE with Mobile IPv6 is further described
in [16, 17]. Unfortunately, most of the current IKE
programs are not aware of Mobile IPv6. To provide

3The code contributed by Francis Dupont exists waiting to
be merged to the SHISA code.

the dynamic keying feature to our stack and encour-
age mobility technology deployment, we are now work-
ing with the Racoon2 project [18] that is developing
an open source IKE implementation. The interaction
mechanism between a mobility stack and an IKE pro-
gram is proposed in [19]. The proposal defines an
optional data structure to provide CoA and HoA in-
formation to an IKE program of an MN, when it needs
to start the SA negotiation process. We are planning
to join the discussion of the standardization process
of the proposal and to provide the implementation.

5.5 Porting to Other Platforms

The KAME version of the SHISA stack supported
both NetBSD 2.0 and FreeBSD 5.4. Unfortunately
we could not support OpenBSD mainly because lack
of developers using OpenBSD in our team, but it
could be supported potentially. As explained, we are
now focusing on NetBSD-current. Once we have com-
pleted the porting work to NetBSD-current, we will
work on FreeBSD-current. The work will be harder
than the NetBSD work, since the difference of the ker-
nel code between FreeBSD 5.4 and FreeBSD-current
is bigger than that of NetBSD. In addition, recent
FreeBSD introduced the fine-grained locking mecha-
nism for better performance in a multi-processor envi-
ronment. The IPv6 code and mobility related code in
the kernel does not have support for the fine-grained
locking mechanism. The adaptation will need some
additional development and more test to stabilize.
The OpenBSD port is planned after the FreeBSD port.

It is possible to port SHISA to other platforms than
BSDs if they support kernel modifications as described
in Section 5.3. In fact, there is a port to the Darwin
operating system as announced in the Darwin IPv6
developers mailing list.

6 Conclusion

We developed the Mobile IPv6 and NEMO BS proto-
col stack on the KAME platform. We are now porting
it to the latest BSD distributions. We have started to
port it to NetBSD as the first step and will try to work
on other platforms based on the progress of the current
work. The stack provides most of the specified fea-
tures. It is confirmed interoperable with many other
independently developed Mobile IPv6 and NEMO BS
stacks, and it works stably. We are now focusing to
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refine the code, especially the kernel code, to make
the quality high enough to be merged to the NetBSD
main tree.

Although we have completed the implementation of
the basic mobility functions, we still have many things
to do to support advanced mobility features under
standardization in the IETF. We continue to work on
supporting these advanced functions to provide more
useful mobility stack to various BSD operating sys-
tems.
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Abstract. Dual Stack Mobile IPv6 (DSMIPv6) is an extension of Mobile IPv6 to support IPv4 care-of
address and to carry IPv4 traffic via bi-directional tunnels between mobile nodes and their home agents.
Using DSMIPv6, mobile nodes only need the Mobile IPv6 protocol to manage mobility while moving within
both the IPv4 and IPv6 Internet. This is an important feature for IPv6 mobility during its deployment phase
because IPv6 access network is not widely deployed yet. This paper describes the DSMIPv6 implementation
on BSD operating systems and presents results of the experiments using the implementation.

1 Introduction

Mobility support in IPv6 is important, as mobile
computers are likely to account for a majority
or at least a substantial fraction of the popula-
tion of the Internet during the lifetime of IPv6.
Hence, the IETF has standardized Mobile IPv6
[1] in 2004 and NEMO Basic Support [2] in 2005,
to address host and network mobility.

Mobile IPv6 and NEMO allow mobile nodes
(host and router) to move within the Internet
while maintaining IP reachability and ongoing
sessions, using a permanent IPv6 address for the
host or a permanent IPv6 prefix inside the moving
network. In these schemes, a mobile node keeps a
home address and a mobile network prefix, which
are permanent, and an IP address acquired from
the network it is visiting, which is called care-of
address. A special redirection server called home
agent maintains the mappings between the home
address and the care-of address, and between the
home address and the mobile network prefix. The
home agent intercepts packets on behalf of the
mobile node and sends them to the mobile node’s
care-of address when the mobile node is away
from its home network; thus the ongoing sessions
can be kept alive.

Mobile IPv6 and NEMO are now in the de-
ployment phase and there are two issues. First, it
is acknowledged that mobile nodes will use IPv6
addresses only for their connections and will, for
a long time, need IPv4 home addresses that can
be used by upper layers, since IPv6 applications
are not widely deployed. Second, as IPv6 wire-

less access networks are not widely deployed, it is
also reasonable to assume that mobile nodes will
move to a network that does not support IPv6
and therefore need the capability to support an
IPv4 care-of address.

The Dual Stack Mobile IPv6 (DSMIPv6) spec-
ification [3] extends the Mobile IPv6 capabili-
ties to allow mobile nodes to request their home
agent, to forward IPv4/IPv6 packets addressed to
their home addresses, to their IPv4/IPv6 care-of
address(es). Using DSMIPv6, mobile nodes only
need Mobile IPv6 or NEMO Basic Support to
manage mobility while moving within the Inter-
net; hence eliminating the need to run both IPv6
and IPv4 mobility management protocols simul-
taneously.

This paper describes the DSMIPv6 implemen-
tation on SHISA [4, 5], a Mobile IPv6 and NEMO
implementation on BSD operating systems, and
its evaluation. Considerations for the current
specification are also discussed in this paper.

This paper is organized as follow. We give an
overview of DSMIPv6 in Sec. 2 followed by an
overview of SHISA in Sec. 3. We then present the
design of our implementation in Sec. 4 and the
implementation details in Sec. 5. We performed
experiments by using our implementation and the
results and considerations are reported in Sec. 6.
This paper concludes in Sec. 7.

2 Dual Stack Mobile IPv6

This section presents an overview of the Dual
Stack Mobile IPv6 (DSMIPv6).
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2

2.1 Overview

A node supporting both IPv4 and IPv6 is called
a dual stack node. It is important to develop dual
stack nodes under IPv6 deployment phase be-
cause we cannot rapidly make the transition to
IPv6. In fact, many applications are still using
IPv4 and most of the access networks support
only IPv4. The situation is the same for Mobile
IPv6 (MIPv6) deployment. Mobile node will visit
IPv4 only access networks and will use IPv4 only
applications in the deployment phase of MIPv6.

In order to use MIPv6 by dual stack nodes,
mobile nodes need to manage an IPv4 and IPv6
home or care-of address simultaneously and up-
date their home agents’ bindings accordingly.
This concept is shown in Fig. 1. On the figure,
MN is a mobile node, HA is a home agent, and
CN is a correspondent node. MN1 is connected
to an IPv6 network and MN2 is connected to an
IPv4 network.

Fig. 1. The concept of DSMIPv6

A MN has both IPv4 and IPv6 home addresses.
HA is a dual stack node connected to both IPv4
and IPv6 Internet. As MN1 is visiting IPv6 net-
work, MN1 configures a global unique IPv6 ad-
dress as its care-of address. MN1 registers the
care-of address to HA, and both IPv4 and IPv6
home addresses bound to the address. IPv4 traf-
fic goes through IPv4 over IPv6 tunnel between
MN1 and HA, and IPv6 traffic goes through IPv6
over IPv6 tunnel. In a similar way, MN2 registers
IPv4 care-of address. Traffic goes through IPv6
over IPv4 tunnel or IPv4 over IPv4 tunnel. By

this way, mobile nodes need only MIPv6 to man-
age mobility while moving within both IPv4 and
IPv6 Internet.

We give details of DSMIPv6 operation in the
rest of this section. However, Home Agent Ad-
dress Discovery feature and Network Address
Translator (NAT) Traversal feature are not men-
tioned because they are not implemented yet.

2.2 Binding Management

A mobile node needs to update the bindings on
its home agent with its current care-of address. If
the mobile node is a dual stack node and has an
IPv4 and IPv6 home address, it creates a binding
cache entry for both addresses. The format of the
IP packet carrying the binding update and ac-
knowledgment messages varies depending on the
visited network. IPv6 network is always preferred
than IPv4 network, so there are three different
scenarios to consider with respect to the visited
network:

1. The mobile node configures a global unique
IPv6 as its care-of address.

2. The mobile node only configures a global
unique IPv4 address as its care-of address.

3. The mobile node only configure a private IPv4
address as its care-of address.

The operation for case 1 is explained in Sec. 2.3
and the operation for case 2 is explained in
Sec. 2.4. Case 3 is not explained in this paper
as mentioned in Sec. 2.1.

2.3 Visiting IPv6 Global Foreign
Network

In this case, the mobile node configures a
global unique IPv6 address as its care-of address
(V6CoA). The mobile node sends a binding up-
date message (BU) to the IPv6 address of its
home agent (V6HA), as defined in [1]. The bind-
ing update message includes the IPv4 home ad-
dress option, which is defined in [3]. The packet
format is shown in Fig. 2. The packet format of
the normal MIPv6 binding update message is also
shown in the figure for comparison.
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MIPv6 BU:

IPv6 header (src=V6CoA, dst=V6HA)

Destination option

HoA (IPv6 home address)

Mobility header

BU

DSMIPv6 BU:

IPv6 header (src=V6CoA, dst=V6HA)

Destination option

HoA (IPv6 home address)

Mobility header

BU [IPv4 home addres]

Fig. 2. Binding update message formats

After receiving the binding update message,
the home agent creates two binding cache en-
tries, one for the mobile node’s IPv4 home ad-
dress and one for the mobile node’s IPv6 home
address. Both entries will point to the mobile
node’s IPv6 care-of address. Hence, whenever a
packet is addressed to the mobile node’s IPv4 or
IPv6 home addresses, it will be forwarded via the
bi-directional tunnel to the mobile node’s IPv6
care-of address. Effectively, the mobile node es-
tablishes two different tunnels, one for its IPv4
traffic (IPv4 over IPv6) and one for its IPv6 traf-
fic (IPv6 over IPv6) with a single binding update
message.

After binding cache entries are created, the
home agent sends a binding acknowledgment
message (BA) to the mobile node as defined in [1].
If the binding update message included an IPv4
home address option, the binding acknowledg-
ment message includes the IPv4 address acknowl-
edgment option. The packet format is shown
in Fig. 3. This option informs the mobile node
whether the binding was accepted for the IPv4
home address. The packet format of the normal
MIPv6 binding acknowledgment message is also
shown in the figure for comparison.

2.4 Visiting IPv4 Only Global Foreign
Network

In this scenario, the mobile node needs to tunnel
IPv6 packets containing a binding update mes-
sage to the home agent’s IPv4 address (V4HA).
The mobile node uses the IPv4 care-of address
(V4CoA) as a source address in the outer header.

MIPv6 BA:

IPv6 header (src=V6HA, dst=V6CoA)

Routing header type 2

HoA (IPv6 home address)

Mobility header

BA

DSMIPv6 BA:

IPv6 header (src=V6HA, dst=V6CoA)

Routing header type 2

HoA (IPv6 home address)

Mobility header

BA [IPv4 addr. ack.]

Fig. 3. Binding Acknowledgement message formats

The binding update message contains the mo-
bile node’s IPv6 home address in the home ad-
dress option. However, since the care-of address
in this scenario is the mobile node’s IPv4 address,
the mobile node must include its IPv4 care-of ad-
dress in the IPv6 packet. The IPv4 address is rep-
resented in the IPv4-mapped IPv6 address format
(V4MAPPED) and is included in the source ad-
dress field of the IPv6 header. If the mobile node
has an IPv4 home address, it also includes the
IPv4 home address option. The packet format is
as shown in Fig. 4.

DSMIPv6 BU (IPv4):

IPv4 header (src=V4CoA, dst=V4HA)

UDP header

IPv6 header (src=V4MAPPED, dst=V6HA)

Destination option

HoA (IPv6 home address)

Mobility header

BU [IPv4 home address]

Fig. 4. Binding update message format in IPv4 network

After accepting the binding update message,
the home agent will update the related binding
cache entry or create a new binding cache entry if
such entry does not exist. If an IPv4 home address
option was included, the home agent will update
the binding cache entry for the IPv4 address or
create a new entry for the IPv4 address. Both
binding cache entries point to the mobile node’s
IPv4 care-of address.
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All packets addressed to the mobile node’s
home address(es) (IPv4 or IPv6) will be encap-
sulated in an IPv4 header that includes the home
agent’s IPv4 address in the source address field
and the mobile node’s IPv4 care-of address in the
destination address field.

After creating the corresponding binding cache
entries, the home agent sends a binding acknowl-
edgment message. If the binding update message
included an IPv4 home address option, the bind-
ing acknowledgment message includes the IPv4
address acknowledgment option as shown in Fig.
5. The binding update message is encapsulated
in an IPv4 payload whose destination is the IPv4
care-of address (represented as an IPv4-mapped
IPv6 address in the binding update message).

DSMIPv6 BA (IPv4):

IPv4 header (src=V4HA, dst=V4CoA)

[UDP header] (if NAT is detected)

IPv6 header (src=V6HA, dst=V4MAPPED)

Routing header type 2

HoA

Mobility header

BA ([IPv4 addr. ack.], NAT DET)

Fig. 5. Binding acknowledgement message format in IPv4
network

3 SHISA: Mobile IPv6 and NEMO
Implementation on BSD operating
systems

As our DSMIPv6 implementation is an extension
of SHISA, we give an overview of the SHISA stack
in this section.

SHISA [4, 5] is an open source Mobile IPv6 and
NEMO Basic Support implementation on BSD
operating systems. It has been developed by the
KAME project [6].

The design feature of SHISA is to separate
packet forwarding functions and signal process-
ing functions into the kernel and user land pro-
grams. The operation of Mobile IPv6 and NEMO
Basic Support is mainly IP packet routing (for-
warding or tunneling). In order to obtain better
performance, the packet routing has been imple-
mented in the kernel space. The signal processing

has been implemented in the user land space be-
cause it is easier to modify or update user land
programs then the kernel. This is important be-
cause the signaling processing of Mobile IPv6 and
NEMO Basic Support is complicated. This sepa-
ration provides both good performance and effi-
ciency when developing the stack.

In SHISA, a mobile node (host or router) con-
sists of small kernel extensions for packet rout-
ing and several user land daemons (MND, MRD,
BABYMDD, NEMONETD, HAD and CND).
MND/MRD are daemons which manage bindings
on a mobile node. BABYMDD is a daemon which
detects the changes of care-of addresses and noti-
fies MND/MRD of the changes. NEMONETD is
a daemon which manages bi-directional tunnels.
HAD is a daemon which manages bindings on a
home agent. CND is a daemon which manages
bindings on a correspondent node. Depended on
the node type, one or several SHISA daemons run
on a node.

Fig. 6 shows the relation of the SHISA mod-
ules. The objects with solid line are modules im-
plemented for SHISA. The dotted line objects are
modules existing in the original BSD system and
the shaded ones are modified for SHISA.

SHISA programs communicate with the ker-
nel and other programs using the Mobility Socket
[7]. The Mobility Socket is a special socket to ex-
change the mobility related information between
the kernel and user land programs.

The Neighbor Discovery module and the Ad-
dress Management module notify the movement
detection daemon (BABYMDD) of the changes
of IP address through the Routing Socket.

The signaling messages such as binding up-
dates and acknowledgments are exchanged be-
tween the SHISA programs on two nodes, for ex-
ample, MRD on a mobile router and HAD on its
home agent. The binding information retrieved
from the signal exchange is stored in the user land
space as the Binding Update database for mobile
nodes and the Binding Cache database for home
agents or correspondent nodes. Only subsets of
the databases that are necessary for packet for-
warding are installed into the kernel.
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Fig. 6. SHISA Overview

4 Design

4.1 Approaches

This section presents the design principle of our
DSMIPv6 implementation. In accordance with
the SHISA design principles, we defined the re-
quirements of our DSMIPv6 implementation as
follows:

1. Separation of signaling processing and packet
routing:
This is for good performance and efficiency in
developing the stack, as explained in Sec. 3.

2. Minimum modification on the existing kernel:
In order to integrate the implementation to
the main branch of BSD operating systems,
it is reasonable to minimize the modification
on the kernel.

3. Minimum modification on the existing SHISA
daemons:
As the specification reuses the Mobile IPv6
functions for an IPv4 mobility management,

it can be expected that many parts of the Mo-
bile IPv6 implementation will be reused.

4.2 Functional Requirements

We defined functional requirements as listed
below based on the approaches. The process
flowchart of DSMIPv6 is shown in Fig. 7. The cir-
cles are functions in the user land space and the
square boxes are functions in the kernel space.
The requirements are corresponded to each func-
tion in the figure.

1. Binding management
Support IPv4 care-of addresses and IPv4
home addresses. It should be done in the user
land programs according to SHISA desgin.

2. Detecting IPv4 care-of addresses
It should be done in the user land programs
same as IPv6 care-of address detection.

3. Sending binding update messages
Send a binding update message with the IPv4
home address option via IPv6 network, or a
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Fig. 7. DSMIPv6 process flowchart

binding update via IPv4 network. It should
be done in the user land programs according
to SHISA design.

4. Receiving binding update messages
It should be done in the user land programs
according to SHISA design.

5. Receiving binding acknowledgment messages
Receive a binding acknowledgment message
with the IPv4 home acknowledgment option
via IPv6 network, or a binding acknowledg-
ment message via IPv4 network. It should be
done in the user land programs according to
SHISA design.

6. Sending binding acknowledgment messages
It should be done in the user land programs
in the same way as sending binding update
messages.

7. Establishing a bi-directional tunnel
Establish a tunnel between an IPv4 care-of
address and an IPv4 home agent address. The
control should be done in the user land pro-
grams.

8. Processing bi-directional tunnel
the processing should be done in the kernel,
according to SHISA design.

5 Implementation

The SHISA daemons are modified as explained in
the following sections to support the DSMIPv6
signaling processing and tunnel setup. Note that
the kernel is not modified for IPv4 tunnel process-
ing because it is already existing in IPv6 stack.
Since we do not introduce any new deamon for
DSMIPv6, the overview of the DSMIPv6 imple-
mentation is the same as Fig. 6.

5.1 New Data Structures and Functions

The following data structures (Table 1) and
functions (Table 2) are newly defined for the
DSMIPv6 extensions.

Table 1. New Data Structures

Name Purpose

IPv4 UDP socket send/receive IPv4 UDP-
encapsulated signaling

IPv4 Raw socket send/receive IPv4 encapsulated
signaling

IPv4 home address added on the binding update list
(struct in addr) (struct binding update list)

IPv4 home address added on the binding cache
(struct in addr) (struct binding cache)

IPv4 home address
mobility header op-
tion

(struct ip6 mh opt ipv4 hoa)

IPv4 home address
mobility option

added on the Mobility Header
option list
(struct mip6 mobility options)

5.2 Binding Management

The DSMIPv6 specification requires to create a
binding cache entry and a binding update list en-
try for each IPv4 and IPv6 home addresses. How-
ever, we put an IPv4 home address entry on the
binding update list entry and the binding cache
entry of the related IPv6 home address, as shown
in Table 1, to simplify the implementation. This is
consistent with the specification because all pa-
rameters in the IPv4 home address binding ex-
pect the home address itself are the same as those
of the IPv6 home address.
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Table 2. New functions

Name Purpose

nemo tun4 set() setup IPv4 tunnel

nemo tun4 del() delete IPv4 tunnel

upd4 input common() a common (used by both mo-
bile nodes and home agents
use) routine for incoming
IPv4 UDP packet

udp4sock open() open an IPv4 UDP socket

raw4 input common() a common routine for incom-
ing IPv4 Raw packet

raw4sock open() open an IPv4 Raw socket

v4 sendmessage() send mobility signaling via
IPv4

mnd get v4hoa by find IPv4 Home Address by an
ifindex() interface index on the MIP in-

terface (where IPv6 home ad-
dress is stored)

mip6 find hal v4() find IPv4 Home Agent ad-
dress

An IPv4 care-of address is stored in the binding
update list entries or the binding cache entries us-
ing the IPv4-mapped IPv6 format. By this way,
the same code are reused to maintain bindings.
Whenever a care-of address is used, correspon-
dent functions are called according to its address
family.

5.3 Mobile Node Modifications

In order to meet requirements defined in Sec. 4.2,
the following modifications are needed for mobile
node.

Detecting IPv4 Care-of Addresses First,
a mobile node have to detect when it config-
ures IPv4 care-of addresses on its interface. One
possible way is to modify a DHCP client to
have the same function as BABYMDD (notify
MND/MRD of a new care-of address via the
Mobility Socket). The advantage is easy to con-
trol the address configuration function. The mo-
bile node can actively perform adding or delet-
ing a care-of address depending on the link sta-
tus. However, this approach makes the compar-
ison procedure between an IPv4 care-of address
and an IPv6 care-of address difficult as following.
When both IPv4 access and IPv6 access are avail-

able on a link, IPv6 care-of address must be cho-
sen as the primary care-of address of the node. If
the care-of address detections are separately per-
formed for IPv4 and IPv6, MND/MRD will have
the address change notification asynchronously.
Therefore, it is reasonable to modify BABYMDD
to deal with IPv4 care-of address too.

The overview of this idea is shown in Fig. 8.
The circles in the figure represent functions re-
lated to the DSMIPv6 operation, and the bold
squares represent a part modified especially for
the DSMIPv6 implementation.

Fig. 8. Detecting IPv4 care-of address and Sending a bind-
ing update message

When an IPv4 care-of address is as-
signed or deleted, a routing message such
as RTM NEWADDR, RTM DELADDR or
RTM ADDRINFO can be received by monitor-
ing the routing socket. BABYMDD monitors the
routing messages to make a list of candidate IPv6
care-of addresses in baby getifinfo(). We use the
same approach for IPv4. A list of candidate IPv4
care-of addresses is also built in baby getifinfo().

In the BSD operating systems, the sysctl al-
lows to retrieve kernel state. The state to be re-
trieved or set is described using a Management
Information Base (MIB) name style. In order to
obtain all addresses assigned on a mobile router,
baby getifinfo() uses a sysctl with the following
MIB.

mib[0] = CTL_NET;
mib[1] = PF_ROUTE;

85



8

mib[2] = 0;
mib[3] = AF_UNSPEC;
mib[4] = NET_RT_IFLIST;
mib[5] = 0;

BABYMDD then selects a primary care-of ad-
dress from the list. The function to determine the
primary care-of address, baby selection(), is mod-
ified to make an IPv4 care-of address as the pri-
mary care-of address. The interface which has the
smallest interface index becomes the primary, and
an IPv6 care-of address has priority over an IPv4
care-of address as described in [3].

BABYMDD notifies MND/MRD of the se-
lected care-of address via the Mobility Socket.
The function to notify MND/MRD of the se-
lected care-of address via the Mobility Socket,
baby md reg(), is modified to carry both IPv6
and IPv4 addresses. The data structure to store
the care-of address was changed from struct sock-
addr in6 to struct sockaddr storage. Whenever
used, the structure is casted with struct sock-
addr in or sockaddr in6 according to its address
family.

Sending a Binding Update Message
The notification is passed though generic
mipsock processing routines such as mip-
sock input common(), mipsock input() and
mipsock recv mdinfo() as shown in Fig. 8.
MND/MRD then updates its binding up-
date list with the primary care-of address by
bul update by mipsock w hoa(). The binding
update list is processed by SHISA binding state
machine with bul kick fsm() and bul reg fsm().
A binding update message is sent by calling
send bu() if everything is successfully processed.

The function to receive Mobility Socket mes-
sages, mipsock recv mdinfo(), is modified to re-
ceive an IPv4 care-of address. If the care-of ad-
dress is IPv4, it will be encoded into an IPv4-
mapped IPv6 address. Thanks to this operation,
it is not required to modify all other binding man-
agement functions.

The function to send a BU, send bu(), is mod-
ified to include the IPv4 home address mobil-
ity option. If the care-of address is an IPv4 ad-
dress, Alternate Care-of Address option is not
added but IPv4 home address mobility option is

added. If the care-of address is an IPv4 address,
v4 sendmessage() is called.

According to [3], the BU is encapsulated in an
IPv4 UDP packet. Thus, a new function to send
an IPv4 message, v4 sendmessage(), is needed to
send an IPv4 message.

IPv4 tunnel packets are decapsulated by the
forwarding module implemented in the kernel
(shown in Fig. 6), and a pair of a care-of address
and a home agent address is to be referred by the
module for the decapsulation. Therefore, a tricky
hack to setup an IPv4 tunnel (store the pair into
the kernel) at the same time as sending a BU is
implemented in order to receive the correspon-
dent BA.

Receiving a Binding Acknowledgment
Message If the care-of address is IPv4, the bind-
ing acknowledgement message is encapsulated
in whether IPv4 or IPv4 UDP as explained in
Sec. 5.4. The mobile node’ operation after receiv-
ing an binding acknowledgment message is shown
in Fig. 9.

Fig. 9. Receiving a BA and Establishing a Bi-directional
Tunnel

When MND/MRD receives an IPv4
or IPv4 UDP encapsulated binding ac-
knowledgment message, the packet will be
processed in raw4 input common(), or in
udp4 input common() in the case of UDP.

The received IPv4/IPv4 UDP packet goes
through sanity checks. The sanity checks consist
of verifying whether the packet contains an IPv6
home address option, and whether the source ad-
dress in the IPv4 header is the same as the source
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address in the IPv6 header (in a IPv6-mapped
IPv4 address format). If they are not the same, it
is assumed that a NAT is existed between the mo-
bile node and the home agent. After the checks,
the packet will be decapsulated and carried to
mh input().

The acknowledgment is then passed to the
SHISA mobility header processing routine,
mh input(). The status of the binding is updated
as [the binding is accepted] in bul kick fsm(),
bul reg fsm(), and bul fsm back register().

Establishing a Bi-directional Tunnel If a
mobile node is a mobile router, a request to create
a bi-directional tunnel between the home agent
and the mobile router is sent via the Mobility
Socket to NEMONETD by mipsock bul request()
after the binding information has been registered.

NEMONETD receives the request at its main
loop, and the bi-directional tunnel is estab-
lished by calling nemo setup forwarding() and
nemo tun4 set().

The function to setup a bi-directional IPv6-in-
IPv6 tunnel, nemo tun setup(), is modified to es-
tablish an IPv4 tunnel. Since the tunnel is already
established before sending the BU, most parts of
this function will be skipped if the care-of address
is an IPv4 address.

The function to setup IPv4 tunnel,
nemo tun4 set(), is added. The function to
delete IPv4 tunnel, nemo tun4 del(), is also
added. Those functions are called according to
the address family of the primary care-of address.

5.4 Home Agent Modifications

As defined in Sec. 4.2, the following modifications
are needed on a Home Agent: Receiving Bind-
ing Update Message, Setup a bi-directional tun-
nel and Sending Binding Acknowledgment Mes-
sage. Fig. 10 shows the details.

Receiving a Binding Update Message
When HAD receives an IPv4 UDP encapsulated
binding update message, it will be processed in
upd4 input common(). The received IPv4 UDP
packet goes through sanity checks defined in [3].

The binding update message is passed to
the SHISA mobility header processing routine,

Fig. 10. Receiving a binding update message, Establishing
a bi-directional tunnel, and Sending a binding acknowl-
edgement message

mh input(), and a function to process the bind-
ing update, receive bu(), is called. If the bind-
ing update message is processed correctly, the
binding cache entry is created or updated by
mip6 bc add() and a request to create a bi-
directional tunnel between the mobile router and
the home agent is sent via the Mobility Socket to
NEMONETD by misock bc request().

The function to process a binding update mes-
sage, receive bu(), is modified to accommodate
IPv4-mapped IPv6 address in the care-of address
field. The function to process/expand mobility
options, get mobility options(), is also modified
to process the IPv4 home address mobility op-
tion.

Sending a Binding Acknowledgment Mes-
sage The binding acknowledgment message is
then sent by send ba() as shown in Fig. 10.
The function to send a binding acknowledg-
ment message, send ba(), is modified to add the
IPv4 acknowledgment option. If the care-of ad-
dress is an IPv4 address, the IPv4 address ac-
knowledgment option is added. The binding ac-
knowledgment message is sent via IPv4 network
by v4 sendmessage(). The v4 sendmessage() is a
function for IPv4 encapsulation or IPv4 UDP en-
capsulation.

Establishing a Bi-directional Tunnel If the
home agent is capable of NEMO Basic Support,
a request to create a bi-directional tunnel is sent
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via the Mobility Socket to NEMONETD by mip-
sock bul request() after the binding registered as
shown in Fig. 10.

NEMONETD receives the request at its main
loop, and the bi-directional tunnel is established
by calling nemo setup forwarding() as well as the
mobile node’s operation.

5.5 Initialization

The main() in HAD is modified to initialize new
sockets. The main() in MND/MRD is also mod-
ified as follows. Users can specify an IPv4 home
agent address as one of the MND/MRD’s argu-
ment. This is because the Dynamic Home Agent
Address Discovery is not defined in the specifica-
tion [3]. New sockets are initialized here as well.

The function to build the home
agent list from MND/MRD’s arguments,
add hal by commandline xxx(), is modified to
add IPv4 home agent addresses too. As both
IPv4 and IPv6 home agent addresses are stored
into the same list, appropriate home agent
address is chosen by confirming its address
family (the address family must be the same
as the current primary care-of address). A new
function, mnd get v4hoa by ifindex() which gets
an IPv4 home address from mip device is added.

The function to make a list of home addresses,
hoainfo insert(), is added to add an IPv4 home
address on the list. There is an design assump-
tion that an IPv4 home address is assigned on the
same interface as where an IPv6 home address is
assigned.

6 Evaluation

We performed experiments using our DSMIPv6
implementation in order to measure signalling
processing costs newly introduced by DSMIPv6
and to confirm that our implementation works as
expected.

6.1 Testbed Details

In order to evaluate our DSMIPv6 implementa-
tion, we have setup a testbed as shown in Fig. 11.

A mobile router (MR) is a laptop, IBM
ThinkPad X31, with Intel Pentium M

Fig. 11. Testbed topology

1298.97MHz, 512MB memory, Intel Pro/1000 VE
Network Controller, BUFFALO WLI2-CF-S11
(IEEE802.11b), and an EvDO 1x (2GHz) cellular
card . SHISA on NetBSD 2.0 is running on this
router.

A home agent (HA) is a 1U server with In-
tel Pentium 2527.16MHz, 256MB memory, and
Sundance ST-201 10/100 Ethernet. SHISA on
NetBSD 2.0 is running on this server.

6.2 Signaling Processing Costs

The DSMIPv6 specification introduces the IPv4
care-of address detection and the additional IPv4
headers. The processing costs are listed as follows
and measured by using the testbed.

1. Detecting a care-of address
a time from when the mobile router attached
to the link, to when baby getifinfo() is called.

2. Sending a binding update
a time from when baby getifinfo() is called to
when v4 sendmessage() is called

3. Receiving a binding update
a time from when udp4 input common() is
called to when receive bu() is called.

4. Sending a binding acknowledgment
a time from when receive bu() is called to
when v4 sendmessage() is called.

5. Receiving a binding acknowledgment
from when raw4 input common() to when
bul kick fsm() is called.
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The scenario is that an address configuration
function (DHCP or NDP) is launched when the
mobile node attaches to the Wireless LAN link
and the above operations are then performed.
This experiments are performed 200 times for the
case that the mobile node attaches to IPv6 global
foreign network (MIPv6 is used) and the case of
IPv4 global foreign network (DSMIPv6 is used).
The results are shown in Table 3.

Table 3. Signaling Costs (msec)

Item 1 2 3

MIPv6 819.077 1.612 0.232

DSMIPv6 1818.758 2.351 0.268

Item 4 5

MIPv6 1.101 0.234

DSMIPv6 1.140 0.316

The time to detect the care-of address are
largely differ. This is because DHCP requires two
round trips between the mobile node and the ac-
cess router whereas NDP requires only one round
trip.

As expected, additional costs due to the outer
IPv4 header are observed. However, these costs
are negligible because they are smaller than the
round trip between the mobile node and the home
agent, and these processing are not happened so
often (for example, the default lifetime of bind-
ings in SHISA is 40 seconds).

6.3 Forwarding Operation Checks and
its Performances

The evaluation of the forwarding module is con-
ducted for all cases (IPv4 or IPv6 home addresses
v.s. IPv4 or IPv6 care-of addresses) by using the
EvDO 1x 2GHz cellular with the experimental ac-
cess point at YRP Research Center, KDDI R&D
Laboratories. The experimental access point can
be configured as an IPv6 global foreign network
or an IPv4 global foreign network. This environ-
ment is less interference than the commercial ac-
cess points because there is no user other than
us.

The results are listed in Table 4. The first col-
umn represents the test case, whether the care-of
address (CoA) is IPv6 or IPv4 and whether the

correspondent node (CN) uses IPv6 or IPv4. The
round trip time (RTT) is measured by using ping
and the throughput is measured by using iperf.

Table 4. Performance in All Situations

Case RTT (ping) Throughput (bps)
CoA-CN (msec) TCP (up/down) UDP (up/down)

v6-v6 174.787 87K/238K 95.3K/332K

v6-v4 183.6 104.3K/701K 96.3K/344.4K

v4-v6 149.8 112K/1.05M 111K/324K

v4-v4 183.27 103.2K/1.08M 110K/308.6K

It is confirmed that the forwarding functions
works in all situations. In general, the header cost
reduction effect is expected when IPv4 is used be-
cause the IPv4 header (20 bytes) is smaller than
the IPv6 header (40 bytes). However, it is not ob-
served in this experiment. The performance thus
might be greatly depended on other elements such
as the round trip time, MTU, network congestion,
and the packet loss.

6.4 Consideration

The DSMIPv6 protocol works in all situation
without adding remarkable header processing
costs. Since only 874 lines are added on the
SHISA user land programs for the DSMIPv6 sup-
port , it can be managed to minimize the mod-
ification (SHISA has 20787 lines). However, the
following issues are needed to be revised in the
spec:

– UDP header in a binding acknowledgment
In order to receive a IPv4 encapsulated bind-
ing acknowledgment, an IPv4 tunnel is setup
before accepting the binding acknowledg-
ment. This can become a security hole. To
avoid this, we suggest to force a UDP header
in the binding acknowledgment always. (This
suggestion has been adopted in the IETF
working group and included in the next ver-
sion of the specification).

– Uses of the IPv4-mapped IPv6 address
The mapped address in an IPv6 header is
not preferable because of several reasons [8].
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Thus, we suggest to put the IPv6 home ad-
dress in the IPv6 header and a kind of IPv4
care-of address option in the mobility headers.

7 Conclusion

This paper describes the DSMIPv6 implementa-
tion on an open source Mobile IPv6 and NEMO
implementation for BSD operating systems. The
DSMIPv6 implementation was designed to sep-
arate the signaling function and the forward-
ing function, and to minimize modifications on
the existing kernel and user land programs. The
binding management code is shared with both
IPv4 and IPv6 mobility functions by using IPv4-
mapped IPv6 address format. When care-of or
home addresses are used, new or modified corre-
spondent functions are called according to its ad-
dress family. An IPv4 care-of address detection
feature is also added to the user land programs.
By evaluating the implementation, it is confirmed
that the DSMIPv6 implementation works in the
all situations without adding remarkable header
processing overhead. It is thus said that the spec-
ification is stable to forward IPv4/IPv6 packets
address to their home addresses/mobile networks.
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ABSTRACT

This paper examines several security measures that have

been implemented in OpenSSH. OpenSSH’s popularity,

and the necessity for the server to wield root privileges,

have made it a high-value target for attack. Despite initial

and ongoing code audits, OpenSSH has suffered from a

number of security vulnerabilities over its 7.5 year life.

This has prompted the developers to implement several

defensive measures, intended to reduce both the likeli-

hood of exploitable errors and the consequences of ex-

ploitation should they occur.

This paper examines these defensive measures; each

measure is described and assessed for implementation ef-

fort, attack surface reduction, effectiveness in preventing

or mitigating attacks, applicability to other network soft-

ware and possible improvements.
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1 Introduction

OpenSSH [22] is a popular implementation of the SSH

protocol [32]. It is a network application that supports

remote login, command execution, file transfer and for-

warding of TCP connections between a client and server.

It is designed to be safely used over untrusted networks

and includes cryptographic authentication, confidential-

ity and integrity protection.

Since its release in 1999, OpenSSH quickly gained

popularity and rapidly became the most popular SSH im-

plementation on the Internet [23]. Today it is installed

by default on almost all modern Unix and Unix-like op-

erating systems, as well as many network appliances and

embedded devices.

OpenSSH is has been developed to run on Unix-like

operating systems and must operate within the traditional

Unix security model. Notably, the OpenSSH server,

sshd, requires root privileges to authenticate users, ac-

cess the host private key, allocate TTYs and write records

of logins. OpenSSH is also based on a legacy code-base,

that of ssh-1.2.16 [33]

OpenSSH’s popularity, and the knowledge that a suc-

cessful compromise gives an attacker a chance to gain

super-user privileges on their victim’s host has made it

an attractive target for both research and attack. Since its

initial release in 1999, a number of security bugs have

been found in OpenSSH. Furthermore some of the li-

braries that OpenSSH depends on have suffered from

bugs that were exposed through OpenSSH’s use of them.

Some of these errors have been found despite

OpenSSH being manually audited on several occasions.

This, and the occurrence of vulnerabilities in depen-

dant libraries, have caused the developers to implement

a number of proactive measures to reduce the likelihood

of exploitable errors, make the attacker’s work more dif-

ficult and to limit the consequences of a successful ex-

ploit. These measures include replacement of unsafe

APIs, avoidance of complex or error-prone code in de-

pendant libraries, privilege separation of the server, pro-

tocol changes to eliminate pre-authentication complexity

and a mechanism to maximise the benefit of OS-provided

attack mitigation measures.

A key consideration in implementing these measures

has been their effect on reducing OpenSSH’s attack sur-
face. Attack surface [17] is a qualitative measure of an

application’s “attackability” based on the amount of ap-

plication code exposed to an attacker. This quantity is

scaled by the ease with which an attacker can exercise

the code – for example, code exposed to unauthenticated
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users would be weighted higher than that accessible only

by authenticated users. A further weighting is given to

code that holds privilege during its execution, as an at-

tacker is likely to inherit this privilege in the event of

a successful compromise. Attack surface may therefore

be considered as a measure of how well developers have

applied Saltzer and Schroeder’s Economy of Mechanism
and Least Privilege design principles [7].

This paper examines these security measures in

OpenSSH’s server daemon, sshd. Each measure is con-

sidered for implementation ease, applicability to other

network applications, attack surface reduction, actual at-

tacks prevented and possible improvements.

2 Critical vulnerabilities

Table 1 lists and characterises several critical vulnerabil-

ities found in OpenSSH since 1999. We consider a vul-

nerability critical if it has a moderate to high likelihood

of successful remote exploitation.

File Problem Found
session.c sanitisation error Friedl, 2000 [15]

deattack.c integer overflow Zalewski, 2001 [18]

radix.c stack overflow Fodor, 2002 [11]

channels.c array overflow Pol, 2002 [8]

auth2-chall.c array overflow Dowd, 2002 [12]

buffer.c integer overflow Solar Designer, 2003 [13]

auth-chall.c logic error OUSPG, 2003 [21]

Table 1: Critical vulnerabilities in OpenSSH

OpenSSH has also been susceptible to bugs in li-

braries it depends on. Over the same period, zlib [9] and

OpenSSL [24] have suffered from a number of vulnera-

bilities that could be exploited through OpenSSH’s use

of them. These include heap corruption [14] and buffer

overflows [27] [16] in zlib, and multiple overflows in the

OpenSSL ASN.1 parser [20].

Note that many of these vulnerabilities stem from

memory management errors. It follows that measures

that reduce the likelihood of memory management prob-

lems occurring, or that make their exploitation more dif-

ficult are likely to yield a security benefit.

3 OpenSSH security measures

OpenSSH will naturally have a raised attack surface be-

cause of its need to accept connections from unauthen-

ticated users, while retaining the root privileges it needs

to record login and logout events, open TTY devices and

authenticate users.

The approaches used to reduce this attack surface or

otherwise frustrate attacks generally fall into the follow-

ing categories: defensive programming, avoiding com-

plexity in dependant libraries, privilege separation and

better use of operating system attack mitigation mea-

sures.

3.1 Defensive programming

Defensive programming seeks to prevent errors through

the insertion of additional checks [29]. An expansive in-

terpretation of this approach should also include avoid-

ance or replacement of APIs that are ambiguous or dif-

ficult to use correctly. In OpenSSH’s case, this has in-

cluded replacement of unsafe string manipulation func-

tions with the safer strlcpy and strlcat [30] and

the replacement of the traditional Unix setuid with the

less ambiguous [2] setresuid family of calls.

A source of of potential errors may be traced to

POSIX’s tendency to overload return codes; using -1

to indicate an error condition, but zero for success and

positive values as a result indicator (a good example of

this is the read system call). This practice leads to

a natural mixing of unsigned and signed quantities, of-

ten when dealing with I/O. Integer wrapping and signed-

vs-unsigned integer confusion have caused a number of

OpenSSH security bugs, so this is of some concern.

OpenSSH performs most I/O calls through a “retry on

interrupt” function, atomicio. This function was mod-

ified to always return an unsigned quantity and to instead

report its error via errno. Making this API change did

not uncover any bugs, but reducing the need to use signed

types it made it easier to enable the compiler’s signed/un-

signed comparison warnings and fix all of the issues that

it reported.

Integer overflow errors are often found in dynamic

array code. A common C language idiom is to

allocate an array using malloc or calloc, but

attacker-controlled arguments to these functions may

wrap past the maximum expressible size_t, result-

ing in an exploitable condition [1]. malloc and

array resizing using realloc are especially prone

to this, as their argument is often a product, e.g.

array = malloc(n * sizeof(*array)).

OpenSSH replaced all array allocations with an error-

checking calloc variant (derived from the OpenBSD

implementation) that takes as arguments a number of

elements to allocate and a per-element size in bytes.

These functions check that the product of these quan-

tities does not overflow before performing an alloca-

tion. The realloc function, which has no calloc-like

counterpart in the standard library (i.e. accepting argu-

ments representing a number of elements and an element

size), was replaced with a calloc-like error-checking ar-

ray reallocator. Implementing this change added only

17 lines of code to OpenSSH, but has not yet uncovered

any previously-exploitable overflows. A similar change

was subsequently made to many other programs in the
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OpenBSD source tree.

Once valid criticism of API replacements is that they

make a program more difficult to read by an new de-

veloper, as they must frequently recurse into unfamil-

iar APIs. In OpenSSH’s case, effort has been made to

use standardised APIs as replacements wherever possi-

ble as well as using logical and consistent naming for

non-standard replacements (e.g. calloc→ xcalloc)

3.2 Avoiding complexity in dependant li-
braries

Significant complexity, and thus attack surface, can lurk

behind simple library calls. If there is sufficient risk, it

may be worthwhile to replace them with more simple, or

limited versions. Replacing important API calls is not

without risk or cost; it represents additional development

and maintenance work and it provides the opportunities

for new errors to be made in critical code-paths. If re-

placement is considered to risky, simply avoiding the call

may still be an option – OpenSSH avoids the use of reg-

ular expression libraries for this reason.

An example of this approach is OpenSSH’s replace-

ment of RSA and DSA cryptographic signature veri-

fication code. Prior to late 2002, OpenSSH used the

OpenSSL RSA_verify and DSA_verify functions

to verify signatures for user- and host-based public-key

authentication. The OpenSSL implementations use a

general ASN.1 parser to unpack the decrypted signature

object. This adds substantial complexity – in the case of

RSA_verify at least 282 lines of code, not including

calls to the raw OpenSSL cryptographic primitives, or its

custom memory allocation, error handling and binary I/O

functions.

These calls were replaced with minimal implemen-

tations that avoided generic ASN.1 parsing in favour

of a simple comparison of the structure of the de-

crypted signature to an expected form. The replacement

openssh_RSA_verify function was implemented in

63 lines of code, of much simpler structure (basically de-

crypt then compare) and with no calls to complex subrou-

tines other than the necessary cryptographic operations.

The replacement functions clearly reduce the attack

surface of public key authentication in OpenSSH and

have avoided a number of critical bugs in the OpenSSL

implementations, notably an overflow in the ASN.1 pars-

ing [20] and a signature forgery bug [3], both of which

were demonstrated to be remotely exploitable.

3.3 Protocol changes to reduce attack sur-
face

The SSH protocol includes a compression facility that

is intended to improve throughput over low-bandwidth

links. Compression is negotiated during the initial key

exchange phase of the protocol and activated, along with

encryption and message authentication, as soon as the

key exchange has finished. The next phase of the proto-

col is user authentication, but by this time compression is

already enabled and any bugs in the underlying zlib code

have been exposed to an unauthenticated attacker.

OpenSSH introduced a new compression method

zlib@openssh.com [5] as a protocol extension (the SSH

protocol has a nice extension mechanism that allows the

use of arbitrary extension method names under the devel-

oper’s domain name – unadorned names are reserved for

standardised protocol methods). The zlib@openssh.com

compression method uses exactly the same underlying

compression algorithm (zlib’s deflate), it merely delays

its activation until successful completion of user authen-

tication. This eliminates all zlib exposure to unauthenti-

cated users.

An alternate solution to this problem that does not a

require protocol change is to refuse compression in the

initial key exchange proposal, but then offer it in a re-

exchange immediately after user authentication has com-

pleted. This approach was rejected, as key exchange is

a heavyweight operation in the SSH protocol; usually

consisting of a Diffie-Hellman [4] key agreement with a

large modulus. Performing a re-exchange to effectively

flip a bit was considered too expensive.

The benefit of delayed compression is clear, despite

there not having been any zlib vulnerabilities published

since it was implemented. Network application develop-

ers considering making non-standard protocol changes

to reduce attack surface should consider interoperability

carefully, especially if the protocol they are implement-

ing lacks a orthogonal extension mechanism like SSH’s.

3.4 Privilege separation

[Privilege separation in OpenSSH is described in detail
in [25], this is a brief summary].

The design principle of Least Privilege [7] requires

that privilege be relinquished as soon as it is no longer

required, but what should application developers do in

cases where privilege is required sporadically through an

applications life? sshd is such an application; it must re-

tain root privileges after the user has authenticated and

logged in as it needs to record login and logout records

and allocate TTYs. Furthermore the SSH protocol allows

multiple sessions over a single SSH transport and these

sessions may be started any time after user authentication

is complete.

OpenSSH 3.3 implemented privilege separation (a.k.a

privsep), where the daemon is split into a privileged

monitor and an unprivileged slave process. Before au-

thentication (pre-auth), the slave runs as a unique, non-
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privileged user. After authentication (post-auth) the slave

runs with the privileges of the authenticated user. In all

cases, the slave process is jailed (via the chroot system

call) into an empty directory, typically /var/empty.

The slave is responsible for the SSH transport, in-

cluding cryptography, packet parsing and managing open

“channels” (login sessions, forwarded TCP ports, etc.).

When the slave needs to perform an action that requires

privilege, or any interaction with the wider system, it

messages the monitor, which performs the requested ac-

tion and returns the results.

The monitor is structured as a state-machine, enforc-

ing constraints over which actions a slave may request

at its stage in the protocol (e.g. opening login ses-

sions before user authentication is complete is not per-

mitted). The monitor is intended to be as small (code-

wise) as possible; the initial implementation removed

privilege from just over two thirds of the OpenSSH ap-

plication [25].

OpenSSH’s privsep implementation is complicated

somewhat by the need to offer compression before au-

thentication. Once user authentication is complete, the

pre-auth slave must serialise and export its connection

state for use by the post-auth slave, including crypto-

graphic keys, initialisation vectors (IVs), I/O buffers and

compression state. Unfortunately the zlib library of-

fers no functions to serialise compression state. How-

ever it does support allocation hooks that it will use

instead of the standard malloc and free functions.

OpenSSH’s privsep includes a memory manager that is

used by zlib. This manager uses anonymous memory

mappings that are shared between the pre-auth slave and

the monitor. The post-auth slave inherits this memory

from the monitor when it is started. Since the monitor

treats these allocations as completely opaque and never

invokes zlib functions, there is no risk of monitor com-

promise through deliberately corrupted zlib state.

The OpenSSH privsep implementation builds the

monitor and both the pre- and post-authentication slaves

into the one executable. This may be contrasted with

the Postfix MTA [31], which uses separate cooperat-

ing executables that run at various privilege levels. The

OpenSSH implementation could probably be simplified

if it the monitor were split into a dedicated executable

that in turn executed separate slave executables. An ad-

ditional benefit to this model would be the slaves would

no longer automatically inherit the same address space

layout as the monitor (further discussed in section 3.5),

but it would carry some cost: it would no longer be pos-

sible to disable privsep, and it would be impossible to

support the standard compression mode though the above

shared memory allocator – zlib would have to be modi-

fied to allow state export, or pre-authentication compres-

sion would have to be abandoned.

Another criticism [19] of OpenSSH’s privsep imple-

mentation is that it uses the same buffer API as the slave

to marshal and unmarshal its messages. This renders the

monitor susceptible to the same bugs as the slave if they

occur in this buffer code (one such bug has already oc-

curred [13]). However, the alternative of reimplement-

ing the buffer API for the monitor is not very attractive

either; maintaining two functionally identical buffer im-

plementation raises the attack surface for questionable

benefit. A better approach may be to automatically gen-

erate the marshalling code (discussed further in section

4).

Privilege separation in OpenSSH has been a great suc-

cess; it has reduced the severity of all but one of the

memory management bugs found in OpenSSH since its

implementation, and the second layer of checking that

the privsep monitor state machine offers has prevented

at least one logic error in the slave from being exploited.

It has suffered from only one known bug, that was not

exploitable without first having compromised the slave

process. OpenSSH is something of a worst-case in terms

of the complexity required to implement privilege sepa-

ration, other network applications seeking to implement

it will likely find it substantially easier.

3.5 Assisting OS-level attack mitigation

Modern operating systems are beginning to implement

attack mitigation measures [28] intended to reduce the

probability that a given attack will succeed. These mea-

sures include stack protection as well as a suite of run-
time randomisations that are applied to stack gaps, exe-

cutable and library load addresses, as well as to the ad-

dresses returned by memory allocation functions. Col-

lectively, these randomisations (often referred to as Ad-

dress Space Layout Randomisation – ASLR) render use-

less any exploits that use fixed offsets or return addresses.

These randomisations are typically applied per-
execution, as it would be very difficult to otherwise

re-randomise an application’s address space at runtime.

Stack protectors such as SSP/Propolice [6] also employ

random “canaries” that are initialised per-execution.

A typical Unix daemon that forks a subprocess to ser-

vice each request will inherit the address space layout

of its parent. In the absence of other mitigation mea-

sures, an attacker may therefore perform an exhaustive
search, trying every possible offset or return address un-

til they find one that works. They will be guaranteed

success, as there is a finite and unchanging space of pos-

sible addresses (as little as 16-bits in some implementa-

tions [26]).

To improve this situation, OpenSSH implemented

self-re-execution. sshd was modified to fork, then exe-

cute itself to service each connection rather than simply
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forking. Each daemon instance serving a connection is

therefore re-randomised, approximately doubling the ef-

fort required to guess a correct offset and removing any

absolute guarantee of success.

This change, while straightforward to implement, does

incur some additional overhead for each connection, and

has been criticised as offering little benefit on systems

that do not support any ASLR-like measures.

4 Future directions

There are several opportunities to further improve

OpenSSH’s security and attack resistance. Perhaps the

most simple is to disable or deprecate unsafe or seldom-

used protocol elements. Removing support for pre-

authentication compression (once a delayed compres-

sion method is standardised) would permanently remove

complexity and significantly simplify the privilege sep-

aration implementation. Likewise, deactivating and ul-

timately removing support for the legacy SSH protocol

version 1 would remove a lot of complexity from the

code (and may hasten the demise of a protocol with

known weaknesses).

Further attack resistance may be gained by including

measures to frustrate return-to-executable attacks, where

the attacker sets up a stack frame with controlled ar-

guments and then returns to a useful point inside the

currently executing process. In OpenSSH’s case, they

may select the do_exec function, that is responsible for

spawning a subshell as part of session creation. These at-

tacks may be made more difficult by pervasively insert-

ing authentication checks into code that has the potential

to be subverted. However these checks have the potential

to bloat and obfuscate the code and their effectiveness at

preventing this attack is not entirely clear.

Improved attack resistance could also be achieved by

having the listener sshd process check the exit status of

the privsep monitor and (indirectly) slave processes. If

an abnormal exit status is detected, such as a forced ter-

mination for a segmentation violation, then the listener

could take remedial action such as rate-limiting similar

connections as defined by a (source address, username)

tuple. This would work especially well on operating sys-

tems that support ASLR – exploits will be nondetermin-

istic on these platforms, and an attacker will be forced to

make many connections to find working offsets. Attacks

may be rendered infeasible or unattractive by limiting the

rate at which these attempts can be made. This concept

could be extended to form the basis of a denial of service

mitigation, where the listener could impose a rate-limit

on connections from hosts that repeatedly fail to authen-

ticate within the login grace period, or that experience

frequent login failures.

Another potential approach to reducing errors is to

generate mechanical parts of the source automatically.

Packet parsers are an excellent candidate for automatic

generation, and this technique is used by many RPC im-

plementations and at least one SSH implementation al-

ready [10]. The channel and privilege separation state-

machines could also be represented at a higher level, al-

lowing easier verification.

5 Conclusion

Network software that accepts data from unauthenticated

users while requiring privilege to operate presents a sig-

nificant security challenge to the application developer.

This paper has described the OpenSSH project’s ap-

proach to this problem, has detailed a number of specific

measures that have been implemented and explored areas

of possible future work.

These measures focus on reducing the attack surface

of the application and making better use of any attack

mitigation facilities provided by the underlying operat-

ing system. They have been shown to be effective in

stopping exploitable problems occurring or in reducing

their impact when they do occur. Finally, these measures

have been shown to be relatively easy to implement and

widely applicable to other network software
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1 Introduction

The ZFS file system makes a revolutionary (as opposed

to evolutionary) step forward in file system design. ZFS

authors claim that they throw away 20 years of obsolute

assumptions and designed an integrated system from

scratch.

The ZFS file system was developed by Sun Microsys-

tems, Inc. and was first available in Solaris 10 operating

system. Although we cover some of the key features of

the ZFS file system, the primary focus of this paper is

to cover how ZFS was ported to the FreeBSD operating

system.

FreeBSD is an advanced, secure, stable and scalable

UNIX-like operating system, which is widely deployed

for various internet functions. Some argue that one of

the largest challenges facing FreeBSD is the lack of a

robust file system. Porting ZFS to FreeBSD attempts to

address these short comings.

2 ZFS file system and some of its features

Calling ZFS a file system is not precise. ZFS is much

more than only file system. It integrates advanced

volume management, which can be utilized by the file

system on top of it, but also to provide storage through

block devices (ZVOLs). ZFS also has many interesting

features not found in other file systems. In this section,

we will describe some of the features we find most

interesting.

2.1 Pooled storage model
File systems created by ZFS are not tied to a specified

block device, volume, partition or disk. All file systems

within the same ”pool”, share the whole storage assigned

to the ”pool”. A pool is a collection of storage devices. It

may be constructured from one partition only, as well as

from hundreds of disks. If we need more storage we just

add more disks. The new disks are added at run time and

the space is automatically available to all file systems.

Thus there is no need to manually grow or shrink the

file systems when space allocation requirements change.

There is also no need to create slices or partitions, one

can simply forget about tools like fdisk(8), bsdlabel(8),

newfs(8), tunefs(8) and fsck(8) when working with ZFS.

2.2 Copy-on-write design

To ensure the file system is functioning in a stable and

reliable manner, it must be in a consistent state. Unfortu-

nately it is not easy to guarantee consistency in the event

of a power failure or a system crash, because most file

system operations are not atomic. For example when a

new hard link to a file is created, we need to create a

new directory entry and increase link count in the inode,

which means we need two writes. Atomicity around disk

writes can only be guaranteed on a per sector basis. This

means if a write operation spans more than a single sec-

tor, there can be no atomicity guarantees made by the

disk device. The two most common methods to manage

consistency of file system are:

• Checking and repairing file system with

fsck [McKusick1994] utility on boot. This is

very inefficient method, because checking large

file systems can take serval hours. Starting from

FreeBSD 5.0 it is possible to run fsck program

in the background [McKusick2002], significantly

reducing system downtime. To make it possible,

UFS [McKusick1996] gained ability to create

snapshots [McKusick1999]. Also file system has to

use Soft updates [Ganger] guarantee that the only
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inconsistency the file system would experience is

resource leaks steming from unreferenced blocks or

inodes. Unfortunately, file system snapshots have

few disadvantages. One of the stages of performing

a snapshot blocks all write operations. This stage

should not depend on file system size and should

not take too long. The time of another stage, which

is responsible for snapshot perparation grows lin-

early with the size of the file system and generates

heavy I/O load. Once snapshot is taken, it should

not slow the system down appreciably except when

removing many small files (i.e., any file less than

96Kb whose last block is a fragment) that are

claimed by a snapshot. In addition checking file

system in the background slows operating system

performance for many hours. Practice shows that it

is also possible for background fsck to fail, which

is a really hard situation, because operating system

needs to be rebooted and file system repaired in

foreground, but what is more important, it means

that system was working with inconsistent file

system, which implies undefined behaviour.

• Store all file system operations (or only metadata

changes) first in a special ”journal”, once the whole

operation is in the journal, it is moved to the des-

tination area. In the event of a power failure or a

system crash incomplete entires in the journal are

removed and not fully copied entries are copied

once again. File system journaling is currently the

most popular way of managing file system consis-

tency [Tweedie2000, Best2000, Sweeney1996].

The ZFS file system does not need fsck or jounrals

to guarantee consistency, instead takes an alternate

”Copy On Write” (COW) approach. This means it never

overwrites valid data - it writes data always into free

area and when is sure that data is safely stored, it just

switches pointer in block’s parent. In other words, block

pointers never point at inconsistent blocks. This design

is similar to the WAFL [Hitz] file system design.

2.3 End-to-end data integrity and self-
healing

Another very important ZFS feature is end-to-end data

integrity - all data and metadata undergoes checksum

operations using one of several available algorithms

(fletcher2 [fletcher], fletcher4 or SHA256). This allows

to detect with very high probability silent data corrup-

tions cased by any defect in disk, controller, cable, driver,

or firmware. Note, that ZFS metadata are always check-

summed using SHA256 algorithm. There are already

many reports from the users experiencing silent data

corruptions successfully detected by ZFS. If some level

of redundancy is configured (RAID1 or RAID-Z) and

data corruption is detected, ZFS not only reads data from

another replicated copy, but also writes valid data back to

the component where corruption was originally detected.

2.4 Snapshots and clones

A snapshot is a read-only file system view from a given

point in time. Snapshots are fairly easy to implement for

file system storing data in COW model - when new data

is stored we just don’t free the block with the old data.

This is the reason why snapshots in ZFS are very cheap

to create (unlike UFS2 snapshots). Clone is created on

top of a snapshot and is writable. It is also possible

to roll back a snapshot forgetting all modifications

introduced after the snapshot creation.

2.5 Built-in compression and encryption

ZFS supports compression at the block level. Currently

(at the time this paper is written) only one compression

algorithm is supported - lzjb (this is a variant of Lempel-

Ziv algorithm, jb stands for his creator - Jeff Bonwick).

There is also implementation of gzip algorithm support,

but it is not included in the base system yet. Data

encryption is a work in progress [Moffat2006].

2.6 Portability

A very important ZFS characteristic is that the source

code is written with portability in mind. This is not an

easy task, especially for the kernel code. ZFS code is

very portable, clean, well commented and almost self-

contained. The source files rarely include system head-

ers directly. Most of the times, they only include ZFS-

specific header files and a special zfs context.h

header, where one should place system-specific includes.

Big part of the kernel code can be also compiled in user-

land and used with ztest utility for regression and stress

testing.

3 ZFS and FreeBSD

This section describes the work that has been done to

port the ZFS file system over to the FreeBSD operating

system.

The code is organized in the following parts of the source

tree:

2
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• contrib/opensolaris/ - userland code taken

from OpenSolaris, used by ZFS (ZFS control utili-

ties, libraries, etc.),

• compat/opensolaris/ - userland API com-

patibility layer (implementation of Solaris-specific

functions in FreeBSD way),

• cddl/ - Makefiles used to build userland utilities

and libraries,

• sys/contrib/opensolaris/ - kernel code

taken from OpenSolaris, used by ZFS,

• sys/compat/opensolaris/ - kernel API

compatiblity layer,

• sys/modules/zfs/ - Makefile for building

ZFS kernel module.

The following milestones were defined to port the ZFS

file system to FreeBSD:

• Created Solaris compatible API based on FreeBSD

API.

• Port userland utilities and libraries.

• Define connection points in the ZFS top layers

where FreeBSD will talk to us and those are:

– ZPL (ZFS POSIX Layer) which has to be able

to communicate with VFS,

– ZVOL (ZFS Emulated Volume) which has to

be able to communicate with GEOM,

– /dev/zfs control device, which actually

only talks to ZFS userland utilities and li-

braries.

• Define connection points in the ZFS buttom layers

where ZFS needs to talk to FreeBSD and this is only

VDEV (Virtual Device), which has to be able to

communicate with GEOM.

3.1 Solaris compatibility layer
When a large project like ZFS is ported from another

operating system one of the most important rules is to

keep number of modifications of the original code as

small as possible, because the fewer modifications, the

easier porting new functionality and bug fixes is. The

programmer that does the porting work is not the only

one responsible for number of changes needed, it also

depends on how portable the source code is.

To minize the number of changes, a Solaris API

compatability layer was created. The main goal was

to implement Solaris-specific functions, structures, etc.

using FreeBSD KPI. In some cases, functions needed

to be renamed, while in others, functionality needed

to be fully implemented from scratch. This technique

proved to be very effective (not forgetting about ZFS

code portability). For example looking at files from the

uts/common/fs/zfs/ directory and taking only

non-trivial changes into account, only 13 files out of 112

files were modified.

3.1.1 Atomic operations

There are a bunch of atomic operations implemented

in FreeBSD (atomic(9)), but there are some that exist

in Solaris and have no equivalents in FreeBSD. The

missing operations in pseudo-code look like this:

<type>

atomic_add_<type>_nv(<type> *p, <type> v)

{

return (*p += v);

}

<type>

atomic_cas_<type>(<type> *dst, <type> cmp, <type> new)

{

<type> old;

old = *dst;

if (old == cmp)

*dst = new;

return (old);

}

Another missing piece is that FreeBSD implements

64bit atomic operations only on 64bit architectures

and ZFS makes heavy use of such operations on all

architectures.

Currently, atomic operations are implemented in

assembly language located in the machine dependant

portions of the kernel. As a temporary work around,

the missing atomic operations were implemented in C,

and global mutexes were used to guarantee atomicity.

Looking forward, the missing atomic operations may be

imported directly from Solaris.

3.1.2 Sleepable mutexes and condition variables

The most common technique of access synchronization

to the given resources is locking. To guarantee exclu-

sive access FreeBSD and Solaris use mutexes. Unfor-

tunately we cannot use FreeBSD mutex(9) KPI to im-
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plement Solaris mutexes, because there are some im-

portant differences. The biggest problem is that sleep-

ing with FreeBSD mutex held is prohibited, on Solaris

on the other hand such behaviour is just fine. The way

we took was to implement Solaris mutexes based on our

shared/exclusive locks - sx(9), but only using exclusive

locking. Because of using sx(9) locks for Solaris mutex

implementation we also needed to implement condition

variables (condvar(9)) to use Solaris mutexes.

3.2 FreeBSD modifications
There were only few FreeBSD modifications needed to

port ZFS file system.

The sleepq add(9) function was modified to take

struct lock object ∗ as an argument instead of

struct mtx ∗. This change allowed to implement

Solaris condition variables on top of sx(9) locks.

The mountd(8) program gained ability to work

with multiple exports files. With this change we can

automatically manage private exports file stored in

/etc/zfs/exports via zfs(1) command.

The VFS VPTOFH() operation was turned into

VOP VPTOFH() operation. As confirmed by Kirk

McKusick, vnode to file handle translation should

be a VOP operation in the first place. This change

allows to support multiple node types within one file

system. For example in ZFS v data field from the vnode

structure can point at two different structures (znode t or

zfsctl node t). To be able to recognize which structure it

is, we define different functions as vop vptofh operation

for those two different vnodes.

lseek(2) API was extended to support SEEK DATA

and SEEK HOLE [Bonwick2005] operation types.

Those operations are not ZFS-specific. They are useful

mostly for backup software to skip ”holes” in files.

”Holes” like those created with truncate(2).

3.3 Userland utilities and libraries
Userland utilities and libraries communicate with the

kernel part of the ZFS via /dev/zfs control device.

We needed to port the following utilities and libraries:

• zpool - utility for storage pools configuration.

• zfs - utility for ZFS file systems and volumes con-

figuration.

• ztest - program for stress testing most of the ZFS

code.

• zdb - ZFS debugging tool.

• libzfs - the main ZFS userland library used by

both zfs and zpool utilities.

• libzpool - test library containing most of the ker-

nel code, used by ztest.

To make it work we also ported libraries (or im-

plemented wrappers) they depend on: libavl,

libnvpair, libuutil and libumem.

3.4 VDEV GEOM
ZFS have to use storage provided by the operating

system, so at the bottom layers it has to be connected

to disks. In Solaris there are two ”leaf” VDEVs

(Virtual Devices) that allow to use storage from disks

(VDEV DISK) and from files (VDEV FILE). We don’t

use those in FreeBSD. The interface to talk to disks in

FreeBSD is totally incompatible with what Solaris has.

That’s why we decided to create a FreeBSD-specific

leaf VDEV - VDEV GEOM. VDEV GEOM was imple-

mented as consumer-only GEOM class, which allows to

use any GEOM provider (disk, partition, slice, mirror,

encrypted storage, etc.) as a storage pool component.

We find this solution very flexible, even more flexible

than what Solaris has. We also decided not to port

VDEV FILE, because files can always be accessed via

md(4) devices.

3.5 ZVOL
ZFS can serve the storage in two ways - as a file system

or as a raw storage device. ZVOL (ZFS Emulated

Volume) is a ZFS layer responsible for managing raw

storage devices (GEOM providers in FreeBSD) backed

by space from a storage pool. It was implemented in

FreeBSD as a provider-only GEOM class to fit best

in FreeBSD current architecture (all storage devices

in FreeBSD are GEOM providers). This way we can

put a UFS file system or swap on top of a ZFS volume

or we can use ZFS volumes as components in other

GEOM tranformations. For example we can encrypt

ZFS volume with GELI class.

3.6 ZPL
ZPL (ZFS POSIX Layer) is the layer that VFS interface

communicates with. This was the hardest part of the en-

itre ZFS port. The VFS interfaces are most of the time

very system-specific and also very complex. We belive
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that VFS is one of the most complex subsystem in the

entire FreeBSD kernel.

There are many differences in VFS on Solaris and

FreeBSD, but they are still quite similar. VFS on So-

laris seems to be cleaner and a bit less complex than

FreeBSD’s.

3.7 Event notification
ZFS has the ability to send notifications on various

events. Those events include information like storage

pool imports as well as failure notifications (I/O er-

rors, checksum mismatches, etc.). This functionality

was ported to send notifications to the devd(8) daemon,

which seems to be the most suitable communication

channel for those kind of messages. We may consider

creating dedicated userland daemon to manage messages

from ZFS.

3.8 Kernel statistics
Various statistics (mostly about ZFS cache usage) are ex-

ported via kstat Solaris interface. We implemented the

same functionality using FreeBSD sysctl interface. All

statistics can be printed using the following command:

# sysctl kstat

3.9 Kernel I/O KPI
The configuration of a storage pool is kept on its

components, but in addition configuration of all

pools is cached in /etc/zfs/zpool.cache file.

When the pools are added, removed or modified

/etc/zfs/zpool.cache file is updated. It was not

possible to access files from the kernel easly (without

using VFS internals), so we created KPI that allows to

perform simple operations on files from the kernel. We

called the KPI ”kernio”. Below are the list of operations

supported. All functions are equivalents of userland

functions, the only difference is that they operate on

vnode, not file descriptor.

struct vnode *kio open(const char *file, int flags,
int cmode)

• Opens or creates a file returning a pointer to a vnode

related to the file. Returns NULL if file can’t be

opened or created.

void kio close(struct vnode *vp)

• Close the file related to the given vnode.

ssize t kio pread(struct vnode *vp, void *buf, size t
size, off t offset)

• Reads data at the given offset. Returns number of

bytes read or -1 if the data cannot be read.

ssize t kio pwrite(struct vnode *vp, void *buf,
size t size, off t offset)

• Writes data at the given offset. Returns number of

bytes written or -1 if the data cannot be written.

int kio fstat(struct vnode *vp, struct vattr *vap)

• Obtains informations about the given file. Return 0

on success or error number on failure.

int kio fsync(struct vnode *vp)

• Causes all modified data and file attributes to be

moved to a permanent storage device. Return 0 on

success or error number on failure.

int kio rename(const char *from, const char *to)

• Renames file from to a name to. Return 0 on suc-

cess or error number on failure.

int kio unlink(const char *name)

• Removes file name. Return 0 on success or error

number on failure.

4 Testing file system correctness

It is very important and very hard to verify that file sys-

tem works correctly. File system is a very complex beast

and there are many corner cases that have to be checked.

If testing is not done right, bugs in a file system can lead

to applications misbehaviour, system crashes, data cor-

ruptions or even security holes. Unfortunately we didn’t

find freely available file system test suits, that verify

POSIX conformance. Because of that, during the ZFS

port project the author developed fstest test suite [fstest].

At the time this paper is written, the test suite contains

3438 tests in 184 files and tests the following file system

operations: chflags, chmod, chown, link, mkdir, mkfifo,

open, rename, rmdir, symlink, truncate, unlink.

5 File system performance

Below we present some performance numbers to com-

pare current ZFS version for FreeBSD with various UFS

configurations. All file systems were tested with the

atime option turned off.

Untaring src.tar archive four times one by one:
UFS 256s

UFS+SU 207s

UFS+gjournal+async 127s

ZFS 237s
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Removing four src directories one by one:
UFS 230s

UFS+SU 94s

UFS+gjournal+async 48s

ZFS 97s
Untaring src.tar by four processes in parallel:

UFS 345s

UFS+SU 333s

UFS+gjournal+async 158s

ZFS 199s
Removing four src directories by four processes in

parallel:
UFS 364s

UFS+SU 185s

UFS+gjournal+async 111s

ZFS 220s
Executing dd if=/dev/zero of=/fs/zero

bs=1m count=5000:
UFS 78s

UFS+SU 77s

UFS+gjournal+async 200s

ZFS 111s

6 Status and future directions

6.1 Port status
ZFS port is almost finished. 98% of the whole function-

ality is already ported. We still need to work on perfor-

mance. Here are some missing functionalities:

• ACL support. Currently ACL support is not ported.

This is more complex problem, because FreeBSD

has only support for POSIX.1e ACLs. ZFS imple-

ments NFSv4-style ACLs. To be able to port it to

FreeBSD, we must add required system calls, teach

system utilities how to manage ACLs and prepare

procedures on how to convert from one ACL-type

to another on copy, etc. (if possible).

• ZFS allows to export file systems over NFS (which

is already implemented) and ZVOLs over iSCSI. At

this point there is no iSCSI target deamon in the

FreeBSD base system, so there is nothing to inte-

grate this functionality with.

• Clean up some parts of the code that were coded

temporarily to allow to move forward.

6.2 Future directions
Of course there is a plan to import ZFS into FreeBSD

base system, it may be ready for 7.0-RELEASE. There

is no plan to merge ZFS to the RELENG 6 branch.

One of the interesting things to try is to add

jails [Kamp2000] support to ZFS. On Solaris, ZFS has

support for zones [Price] and will be nice to experiment

with allowing for ZFS file system creation and adminis-

tration from within a jail.

FreeBSD UFS file system supports system flags -

chflags(2). There is no support for those in the ZFS file

system. We consider adding support for system flags to

ZFS.

There is no encryption support in the ZFS itself, but

there is an ongoing project to implement it. It may

be possible to cooperate with SUN developers to help

finish this project and to protect portability of the code,

so we can easly integrate encryption support with the

opencrypto [Leffler2003] framework.
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